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1 Introduction

Young tableaux is a combinatorial object which has remarkable applications in representation theory and
algebraic geometry. What makes it even more remarkable is that at first sight Young Tableaux does not
seem as a serious mathematical object at all. In this talk I’ll give a brief overview of how Young tableaux is
related to representation theory of Lie algebras and quantum groups. It is a primary example of combinatorial
representation theory.

2 Basic notions of Young Tableaux

Definition 2.1 A Young diagram is a collection of boxes arranged in left-justified rows, with a weakly
decreasing number of boxes in each row. The total number of boxes is said to be the size of the Young
diagram.

It is clear that given a natural number n, the set of partition of n is in a one-to-one correspondence with
the set of Young diagrams with size n. We use the notation λ ⊢ n or equivalently |λ| = n when

λ = (λ1, · · · , λm), λ1 ≥ λ2 ≥ · · ·λm > 0

is a partition of n. We write λ to denote the Young diagram whose i-th row has a length λi.

Example 2.2 The partition λ = (3, 2, 2) ⊢ 7 corresponds to the following Young diagram.

Definition 2.3 Given a set S = {1, 2, · · · , d} and a Young diagram λ, a Young tableaux is an assignment
of elements of S to each boxes of the Young diagram following these two rules:

1. assigned elements weakly increase across each row;

2. assigned elements strictly increase down each column.

We say that the Young tableaux is a tableaux on the diagram λ, and say that λ is the shape of the Young
tableaux.

Example 2.4 Among the following pictures, only the leftmost one is a Young tableaux. Its shape is λ =
(3, 2).
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Definition 2.5 If a Young tableaux T has entries in the set {1, 2, · · · , d}, its content is an array which
specifies how many times each number is used. More precisely, it is the array µ(T ) = (µ1, · · ·µd) where µi

is the number of i in the Young tableaux.

Definition 2.6 Given a Young diagram λ and an integer d, we can define an important polynomial called
a Schur function, which is written as sλ(x1, · · · , xd). Let T be the set of Young tableaux with a shape
λ in entries in {1, 2, · · · , d}. For each Young tableaux T ∈ T we have a monomial xT =

∏m
i=1 x

µi

i , where
µ(T ) = (µ1, · · · , µd) is the content of T . The Schur function sλ(x1, · · · , xd) is defined to be the sum of xT

over every T ∈ T . A coefficient of xµ equals the number of Young tableaux with shape λ and content µ,
which is said to be a Kostka number written as Kµ

λ .

Example 2.7 The following is the complete list of Young tableaux with shape λ = (2, 2) and d = 3. We
can read off the Schur function as sλ(x1, x2, x3) = x2
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Remark 2.8 We can observe that a Schur function is a symmetric polynomial. It is a highly nontrivial
fact. The easiest way of proving it is using Pierri’s rule, which is a recurrence relation for Schur function in
the lexicographic ordering of Young diagrams.

3 Basic notions of Lie algebra

Definition 3.1 A vector space L over a field F, with an operation L × L → L denoted (x, y) 7→ [x, y] and
called the bracket or commutator of x and y, is called a Lie algebra over F if the following axioms are
satisfied.

1. Bilinearity: The bracket operation is F-bilinear.

2. Anti-commutativity: [x, y] = −[y, x] for every x, y ∈ L.

3. Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for every x, y, z ∈ L.

A Lie algebra homomorphism ϕ : L → L′ between two Lie algebras L and L′ is a linear map which
preserves the bracket, i.e., ϕ([x, y]) = [ϕ(x).ϕ(y)] for x, y ∈ L. It is an isomorphism if it has an inverse.

Example 3.2 An associative F-algebra A is a Lie algebra with bracket [A,B] = AB −BA.

Example 3.3 The vector space F3 with Lie bracket [v, w] = v × w is a Lie algebra.

Example 3.4 The most important examples of Lie algebras are the general linear Lie algebra gl(V )
and classical Lie algebras over the base field C. Given a vector space V the set End(V ) has a structure
of an associative F-algebra. From Example 3.2 it has a canonical Lie algebra structure. To emphasize that
we are using the Lie algebra structure, we denote it by gl(V ). For n ∈ Z>0 the gl(n) refers to gl(Fn), and it
is identified with the vector space of Matn×n(F) with the Lie bracket [A,B] = AB − BA. Below is the list
of classical Lie algebras. Their Lie brackets are defined as [A,B] = AB −BA.

1. An = sl(n+ 1) = {x ∈ gl(n+ 1) : tr(x) = 0}

2. Bn = so(2n+ 1) = {x ∈ gl(2n+ 1) : x+ xT = 0}

3. Cn = sp(2n) =

{
x ∈ gl(2n) : Jnx+ xTJn = 0, Jn =

[
0 In

−In 0

]}
4. Dn = so(2n) = {x ∈ gl(2n) : x+ xT = 0}
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Definition 3.5 Given a Lie algebra g, its Lie algebra representation is a tuple (V, ϕ), where V is a
vector space and ϕ : g → gl(V ) is a Lie algebra homomorhpism. We write xv = ϕ(x)(v) for x ∈ g and v ∈ V
whenever the map ϕ is clear from the context. We say that the Lie algebra g acts on the vector space V
and the map ϕ(x) ∈ gl(V ) is said to be an action of x ∈ g. If V contains a vector subspace W where
each ϕ(x) : V → V descends to ϕ(x) : W → W , then W is said to be a subrepresentation of V . The
representation (V, ϕ) is said to be irreducible if V does not admit a proper nontrivial subrepresentation.

It is instructive to compare the notion of Lie algebra representation with the notion of group represen-
tation and associative F-algebra representation. Given a group G its representation is a tuple (V, ϕ), where
V is a vector space and ϕ : G → GL(V ) is a group homomorphism. Given an associative F-algebra A its
representation is a tuple (V, ϕ), where V is a vector space and ϕ : A → End(V ) is an F-algebra homomor-
phism. Generally speaking, if we want to define a notion of representation of a certain algebraic structure,
we must have a target which is a suitable subset of End(V ) which has the same algebraic structure, and the
map ϕ preserving the structure. For group representation the subset GL(V ) is chosen because End(V ) is
not a group.

Example 3.6 Consider the Lie algebra sl(2) = A1. It has a basis

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
,

which satisfies relations
[E,F ] = H, [H,E] = 2E, [H,F ] = −2F.

The set of finite-dimensional irreducible representations is in a one-to-one correspondence with Z≥0. Given
l ∈ Z≥0 we can think of a vector space Vl = SpanC{v0, · · · , vl} with an action

Hvi = (l − 2i)vi, Evi = ivi−1, Fvi = (l − i)vi+1.

We can readily confirm that this is a representation of A1, and it is not very hard to confirm that this
representation is irreducible.

Note 3.7 Given two representations ϕ1 : g → gl(V1) and ϕ2 : g → gl(V2) we can produce a new represen-
tation by either taking a direct sum or a tensor product. For the direct sum, we can form a Lie algebra
homomorphism g → gl(V1 ⊕ V2) by the rule x(v1, v2) = (xv1, xv2). For the tensor product, we can form a
Lie algebra homomorphism g → gl(V1 ⊗F V2) by the rule x(v1 ⊗ v2) = xv1 ⊗ v2 + v1 ⊗ xv2.

Remark 3.8 The choice x(v1 ⊗ v2) = xv1 ⊗ v2 + v1 ⊗xv2 of action for the tensor product might seem to be
arbitrary at first sight. However, it can be explained in the unified framework of Hopf algebra. The universal
enveloping algebra of a Lie algebra has a Hopf algebra structure.

4 Questions in the representation theory of Lie algebras

Note 4.1 From now on, we fix F = C.

Since our base field C is algebraically closed and is of a characteristic zero, we have the following theorem.

Theorem 4.2 (Weyl’s complete reducibility theorem) Every finite-dimensional representation of finite-
dimensional semisimple Lie algebras is a direct sum of irreducible representations.

Remark 4.3 We will not give a definition of semisimple Lie algebra here but instead list some important
facts. Each finite-dimensional semisimple Lie algebra is a direct sum of simple Lie algebras, and we have a
complete classification of simple Lie algebras. Therefore to understand the representation theory of finite-
dimensional semisimple Lie algebras, it suffices to understand the representation theory of simple Lie algebras.
Classical Lie algebras are simple, and there are only five exceptional simple Lie algebras other than classical
Lie algebras. An interesting fact is that after we develop the theory of root system, the classification problem
boils down into an elementary combinatorial problem which ultimately gives Dynkin diagrams.
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Notation 4.4 For this section, let g be a simple Lie algebra.

From Weyl’s complete reducibility theorem, the following questions arise naturally in the representation
theory of g. The first question is the following.

Q1: Can we completely classify the finite-dimensional irreducible representations of g?

We have an affirmative answer.

Notation 4.5 Let C be the set of finite-dimensional isomorphism classes of irreducible represenations of g.

The set C is in a one-to-one correspondence with the set of dominant integral weights, and we have a
conceptual answer to the structure of each irreducible representation: a maximal quotient of a Verma module.
However, this conceptual answer is not very helpful for explicit computations. This leads us to the following
question.

Q1-1: Can we concretely understand the finite-dimensional irreducible representations of g?

The answer is affirmative. Surprisingly, Young tableaux enters in the description of finite-dimensional irre-
ducible representations of simple Lie algebras. For the sake of simplicity, let us assume that g = An for a
moment. The set C is in a one-to-one correspondence with the set of Young diagrams with at most n rows.
For a Young diagram λ the corresponding irreducible representation V (λ) has a C-basis {eT }T∈T where T
is the set of Young tableaux on the Young diagram λ with entries chosen in the set {1, 2, · · · , n+ 1}.

Example 4.6 Recall from Example 3.6 that the set of finite-dimensional irreducible representations of A1

is {Vl}l∈Z≥0
. The corresponding Young diagram is of a shape (l). The basis {v0, · · · , vl} of Vl is realized as

the set of Young tebleaux with shape (l) and entries in {1, 2}. Specifically, the base vi corresponds to the
Young tableaux

1 1 . . . 1 2 2 . . . 2

where the number of 1 is l.

A detailed account for type A Lie algebras can be found in the book [F]. For other types of simple Lie
algebras, we need some generalized versions of Young tableaux. The definition of Young diagram may differ,
and rules of filling out Young diagram may differ. An overview for classical Lie algebras can be found in the
thesis [W], and for exceptional Lie algebras one may consult the book [C].

Let’s think of another natural question arising in the study of representation theory of g.

Q2: Given a finite-dimensional representation V of g, can we find a decomposition

V ∼= W⊕m1
1 ⊕W⊕m2

2 ⊕ · · · ⊕W⊕mr
r

where Wi ∈ C and mi ∈ Z>0?

Assume that we know the irreducible decomposition of two representations V1 and V2. Then we have an
obvious answer for the irreducible decomposition of V1 ⊕ V2. A more interesting problem would be to ask
the irreducible decomposition of V1 ⊗V2. We can immediately reduce the problem to the situation where V1

and V2 are irreducible.

Q2-1: Given V1, V2 ∈ C, can we find a decomposition

V1 ⊗ V2
∼= W⊕m1

1 ⊕W⊕m2
2 ⊕ · · · ⊕W⊕mr

r

where Wi ∈ C and mi ∈ Z>0?

This kind of problem is called tensor product decomposition problem, and it is an important problem
in various types of representation theory. The concept of character is useful in this type of problem.
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Pseudo-Definition 4.7 A character is an invariant attached to each representation which enjoys the
following properties.

1. If V1 and V2 are isomorphic, then ch(V1) = ch(V2).

2. ch(V1 ⊕ V2) = ch(V1) + ch(V2)

3. ch(V1 ⊗ V2) = ch(V1)× ch(V2)

4. For distinct V1, · · · , Vm ∈ C, the characters ch(V1), · · · , ch(Vm) are linearly independent over C.

From the properties of character, we can immediately know that the question Q2-1 is solved if we know
the characters of all irreducible representations. Again, we have a conceptual answer, namely Weyl character
formula. However, despite its elegance the formula is not suitable for explicit computations. Moreover, if
we solely rely on Weyl character formula, it is hard to give an interpretation of the components W1, · · · ,Wr

and multiplicities m1, · · · ,mr. Here again Young tableaux becomes extremely handy. To simplify, let us
assume g = An for a moment. Recall that we can concretely understand irreducible representations using
Young tableaux. We can reformulate the question as the following.

Q2-2: Can we read off the character of V (λ) ∈ C from the combinatorial model given by
Young tableaux? Given V (λ1), V (λ2) ∈ C can we find a combinatorial interpretation to the
decomposition ch(V (λ1))× ch(V (λ2)) =

∑
ν mνch(V (ν))?

Again we have an affirmative answer. Recall that for an irreducible representation V (λ) we have a basis
{eT }T∈T parametrized by Young tableaux on the shape λ. The contribution of eT on ch(V (λ)) is solely
determined by its content, so it turns out that the Schur function sλ with appropriate insertion of variables
equals the character of V (λ). Therefore for the tensor decomposition problem we only have to understand
the decomposition sλ1

sλ2
=

∑
λ c

ν
λ1λ2

sν . From the combinatorics of Young tableaux, it turns out that the
coefficient cνλ1λ2

is a Littlewood-Richardson number. It is the number of ways of expressing a given Young
tableaux T on the shape ν by the product T1 ∗T2 of Young tableaux T1, T2 on the shapes λ1, λ2, respectively.
It does not depend on the choice of T . There has been extensive research on effective algorithms of computing
Scuhur functions (or equivalently Kostka numbers) and Littlewood-Richardson numbers.

Representation Theory Combinatorics
labelling of irreducible representations Young diagram
basis of irreducible representation Young tableaux
weight of a base content of a Young tableaux
dimension of weight space Kostka number
character of irreducible representation Schur function
multiplicity in tensor product decomposition problem Littlewood-Richardson number

5 A Brief Remark on Quantum Groups

One area that combinatorics of Young tableaux manifests itself is the representation theory of quantum
groups. Quantum groups and their representations are quite complicated objects, and you will probably find
yourself struggling even when you try to do some basic computations. However, the theory of crystal bases
developed by M. Kashiwara and G. Lusztig in early 1990’s greatly helps us analyze those objects. To define
what a quantum group is, we have to start from the notion of universal enveloping Lie algebra.

Definition 5.1 Let g be a Lie algebra. The universal enveloping algebra Ug is the unital associative
F−algebra with a Lie algebra homomorphism ι : g → Ug which satisfies the following universal property:

for every Lie algebra homomorphism ϕ : g → A to a unital associative algebra A there exists a
unique algebra homomorphism ϕ̃ : Ug → A such that ϕ̃ ◦ ι = ϕ.
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The definition above of universal enveloping algebra might seem too abstract, but there is a conceptual
way of understand it. Lie algebra is not an algebra we are familiar with, in the sense that it does not satisfy
associativity. A universal enveloping algebra is a unital associative algebra which can substitute Lie algebra
without losing any information. More precisely, the representation theory of Ug as an associative algebra is
the same as the representation theory of g as a Lie algebra. Moreover, we have a nice basis of the universal
enveloping algebra, namely PBW basis.

Pseudo-Definition 5.2 A quantum group Uqg is a q-analogue (or q-deformation) of the universal en-
veloping algebra Ug.

Remark 5.3 In fact quantum group is not defined for arbitrary Lie algebras. Instead, it is defined for
symmetrizable Kac-Moody algebras. We won’t explain the definition of symmetrizable Kac-Moody algebras,
but it covers almost every Lie algebras we would be interested in, including finite-dimensional semisimple
Lie algebras and affine Lie algebras. Note that affine Lie algebras are of infinite-dimension.

Notation 5.4 For this section let g be a symmetrizable Kac-Moody algebra.

There is a category Oq
int of integrable representations of a quantum group Uqg. It is a full subcategory

of the category of representations of Uqg which behaves nicely: it is closed under taking direct sum, tensor
product, and subrepresentation. A highly nontrivial fact is that this category enjoys complete reducibility.

Note 5.5 Throughout this section, a representation is an object of Oq
int.

Theorem 5.6 (G. Lusztig) Every representation can be written as a direct sum of irreducible represen-
tations.

Therefore it is natural for us to ask the same questions as before. For Q1-1 we have both a good news
and bad news. We have a global bases of both representations and the negative part U−

q g of a quantum group.
The bad news is that we cannot easily write down the action of quantum groups using the global bases, even
though it substantially simplifies the action. There are two good news. First one is that this basis is defined
for arbitrary symmetrizable Kac-Moody algebra. Recall that in the previous section we only had models for
finite-dimensional semisimple Lie algebras. The second one is that we now have richer structures which are
very suitable for combinatorial arguments.

Pseudo-Definition 5.7 For a representation V ∈ Oq
int or a negative part U−

q g of a quantum group we can
attach an invariant crystal graph to each of them. It is a colored directed graph whose vertices are given
by ‘freezing’ global bases to the limit q → 0 and arrows are given by freezing the action of generators of the
quantum group.

Remark 5.8 We use the expression ‘freezing’ for the q → 0 limit because in the physics context of quantum
groups the parameter q of deformation represents the temperature.

Crystal graphs enjoy the following remarkable properties.

1. Two isomorphic representations have isomorphic crystal graphs.

2. They are stable under taking direct sum and tensor product of representations.

3. They stable under the canonical projection U−
q g → V where V is an irreducible representation.

4. The set of connected components of a crystal graph is in a one-to-one correspondence with irreducible
components of the given representation.

Given crystal graphs GV and GW of two representations V and W respectively, the crystal graph of V ⊕W is
the disjoint union of GV and GW . Moreover, we can easily obtain the crystal graph of V ⊗W by applying the
tensor product rule to the graphs GV and GW . These combined with Kashiwara embedding gives us a good
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framework for making a combinatorial description of crystal graphs. For a finite-dimensional semisimple Lie
algebra g one obtains a nice Young tableaux description of crystal graphs for irreducible representations.
From the last property of crystal graphs the tensor product decomposition problem Q2-2 boils down to a
combinatorics of Young tableaux.

Example 5.9 Figure 1 and Figure 2 are examples of Young tableaux description of crystal graphs. Figure
1 is a crystal graph for the irreducible representation of g = sl3 with the highest weight 2ω2, and Figure
2 is the crystal graph for the negative part U−

q g of the quantum group. Note that the crystal graph of
B(∞) contains the crystal graph of B(λ) as a subgraph. (see the colored vertices in Figure 2 and compare
with Figure 1) This follows from the property of crystal graph that they are stable under the canonical
projection U−

q g → V .

1 1

2 2

1 1

2 3

1 2

2 3

1 1

3 3

1 2

3 3

2 2

3 3

1

1

1
2

2

2

Figure 1: The crystal graph B(λ) for λ = 2ω2, g = sl3
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Figure 2: The crystal graph B(∞) for g = sl3
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