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Introduction

This is an extending version of my lectures in Seoul in October 2014 and in Austin in February
2015. The main topic covered in the lectures is an interrelationship between the theory of discrete
groups acting in hyperbolic spaces and groups of automorphisms of algebraic varieties. Also I
explain in detail some application of hyperbolic geometry to the problem of counting the degrees of
curves in an orbit of an infinite group of automorphisms of an algebraic surfaces. The background in
algebraic geometry for experts in hyperbolic geometry and vice versa was assumed to be minimal.

It is my pleasure to thank the audience for their patience and motivating questions. I also thank
JongHae Keum and Daniel Allcock for inviting me to give the lectures.
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Lecture 1

Hodge-Index Theorem

A Minkowski (or Lorentzian, or pseudo-Euclidean) is a real vector space V of finite dimension
n + 1 > 1 equipped with a nondegenerate symmetric bilinear form (v, w) of signature (1, n) (or
(n, 1)) but we stick to (1, n)). The signature of this type is called hyperbolic. One can choose a
basis (e1, . . . , en+1) in V such that the matrix of the bilinear forms becomes the diagonal matrix
diag(1,−1, . . . ,−1).

An integral structure on V is defined by a choice of a basis (f1, . . . , fn+1) in V such that (fi, fj) ∈
Z. Then M = Zf1 + · · ·+ Zfn+1 is a quadratic lattice, i.e. a free abelian group equipped with an
integral valued non-degenerate quadratic form. We have

V ∼= MR := M ⊗Z R.

The occurrence of vector spaces with hyperbolic signature in algebraic geometry is explained by
the Hodge Index Theorem.

Let X be a nonsingular complex projective algebraic variety of dimension d (of real dimension
2d). Its cohomology Hk(X,C) admits the Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X),

where Hp,q(X) = Hq,p(X). The dimensions of Hp,q) are called the Hodge numbers and denoted
by hp,q(X). Via the de Rham Theorem, each cohomology class in Hp,q(X) can be represented by
a complex differential form of type (p, q), i.e. locally expressed in terms of the wedge-products of
p forms dzi and q-forms of type dz̄j . We also have

Hp,q(X) ∼= Hq(X,Ωp
X), (1.1)

where Ωp
X is the sheaf of holomorphic differential p-forms on X .
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2 LECTURE 1. HODGE-INDEX THEOREM

We set

Hp,q(X,R) : = Hp+q(X,R) ∩ (Hp,q(X) +Hq,p(X)), (1.2)

Hp,q(X,Z) : = Hp+q(X,Z) ∩ (Hp,q(X) +Hq,p(X)). (1.3)

Fix a projective embedding of X in some projective space PN , then cohomology class η of a
hyperplane section of X belongs to H1,1(X,Z).

The cup-product (φ, ψ) 7→ φ ∪ ψ ∪ ηd−k defines a bilinear form

Qη : Hk(X,R)×Hk(X,R)→ H2d(X,R) ∼= R,

where the last isomorphism is defined by the fundamental class of X .

The Hard lefschetz Theorem asserts that, for any k ≥ 0,

Lk : Hd−k(X,C)
φ 7→φ∧ηk−→ Hd+k(X,C)

is an isomorphism compatible with the Hodge structures (i.e. Lk(Hp,q(X)) = Hp+k,q+k(X)). For
any k ≥ 0, let

Hd−k(X,Λ)prim = Ker(Lk+1),

Hp,q(X,Λ)prim = Hp,q(X) ∩Hd−k(X,Λ)prim, p+ q = d− k.

where Λ = Z,R,C. The Hodge Index Theorem asserts that the cup-product Qη satisfies the follow-
ing properties

• Qη(Hp,q(X), Hp′,q′(X)) = 0, if (p, q) 6= (q′, p′);

•
√
−1

p−q
(−1)(d−k)(d−k−1)/2Qη(φ, φ̄) > 0, for any φ ∈ Hp,q(X)prim, p+ q = k.

Let us apply this to the case when d = 2m, where m is odd. In this case, we have the cup-product
on the middle cohomology

Hd(X,Λ)×Hd(X,Λ)→ H2d(X,Λ) ∼= Λ.

By Poincaré Duality , this is the perfect symmetric duality modulo torsion (of course, no torsion if
Λ 6= Z)). For Λ = R, it coincides with Qη, and the Hodge Index Theorem asserts in this case that
Qη does not depend on η and its restriction to Hm,m(X,R)prim is a negative definite symmetric
bilinear form. Assume that

hm−1,m−1(X) = Cηm−1 (1.4)

Then
Hm,m(X,R) = Hm,m(X,R)prim ⊥ Rηm, (1.5)
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has signature (1, hm,m(X)− 1). Note that Hm,m(X,R)prim depends on a choice of an embedding
X ↪→ PN , so the previous orthogonal decomposition depends on it too.

We will be interested with hyperbolic vector spaces equipped with an integral structure. For this
reason, we should consider the part Hp,p(X,Z) of Hp,p(X). For any closed algebraic irreducible
p-dimensional subvariety Z of X , its fundamental class [Z] belongs to Hp,p(X,Z). To see this,
we use that, locally on an open subset U , where Z is a complex manifold, we can choose complex
coordinates z1, . . . , zp. Thus, the restriction of each form ω of type (p′, q′) 6= (p, p) to U vanishes.
This shows that

∫
Z ω = 0 for such forms, and hence [Z] defines a cohomology class in Hp,p(X). It

is obviously integral.

For any p ≥ 0, let
H2p(X,Z)alg ⊂ Hp,p(X,Z)

be the subgroup of cohomology classes generated by the classes [Z], where Z is an irreducible
p-dimensional closed subvariety of X . Its elements are called algebraic cohomology classes.

The Hodge Problem asks whether, for class ω ∈ Hp,p(X,Z), there exists an integer n such that
nω ∈ H2p(X,Z)alg. It is known to be true for p = 1 (and n could be taken to be equal to 1). For
p > 1, it is known only for a few classes of algebraic varieties (see [33]).

We set
Np(X) = H2p(X,Z)alg/Torsion.

This is a free abelian group of some finite rank ρk(X). When d = 2m = 2(2s+ 1), and X satisfies
(1.4), the group Nm(X) defines an integral structure on the hyperbolic vector space

Nm(X)R = Nm(X)⊗Z R ⊂ Hm,m(X,R).

of dimension 1 + ρm(X).

In the case of algebraic varieties defined over a field k different from C one defines the Chow
group CHp(X) of algebraic cycles of codimension p on X modulo rational equivalence (see [23]).
Its quotient CH(X)alg modulo the subgroup of cycles algebraically equivalent to zero is the closest
substitute of H2p(X,Z)alg.

The intersection theory of algebraic cycles defines the symmetric intersection product

CHk(X)× CHl(X)→ CHk+l(X), (γ, β) 7→ γ · β

It descents to the intersection product

CHk(X)alg × CHl(X)alg → CHk+l(X)alg.

When k = C, there is a natural homomorphism CHp(X)alg → Hp,p(X,Z), however it may not be
injective if p > 1.

The group CH1(X) coincides with the Picard group Pic(X) of X , the group of divisors modulo
linear equivalence. It is naturally identified with the group of isomorphism classes of line bundles
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(or invertible sheaves) on X (see [28]). The group CH1(X)alg is denoted by NS(X) and is called
the Néron-Severi group of X .

One defines the groupNp(X) of numerical equivalence classes of algebraic cycles as the quotient
group of CHp(X) modulo the subgroup of elements γ such that γ ·β = 0 for all β ∈ CHd−p(X). It
is not known whether this definition coincides with the previous definition when k = C and p > 1.

The statement about the signature of the intersection product on Nd(X)R is a conjecture. It
follows from Standard Conjectures of A. Grothendieck (see [30]).

The group N1(X) coincides with the group Num(X) of numerical classes of divisors on X . It is
the quotient of the Néron-Severi group by the torsion subgroup.

Example 1.1. Assume d = 2, i.e. X is a nonsingular projective algebraic surface. SinceH0(X,Λ) ∼=
Λ, we have h0,0 = 1, and condition (1.4) is obviously satisfied. In this case

N1(X) = H1,1(X,Z)/Torsion.

The number ρ1(X) is called the Picard number of X and is denoted by ρ(X). The Hodge decom-
position

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

has the Hodge numbers h2,0 = h0,2 = dimH0(X,Ω2
X). By Serre’s Duality, dimCH

0(X,Ω2
X) =

dimCH
2(X,OX), where OX is the sheaf of regular (=holomorphic) functions on X . This number

is classically denoted by by pg(X) and is called the geometric genus of X . We have

ρ(X) ≤ h1,1(X) = b2(X)− 2pg(X), (1.6)

where bk(X) denote the Betti numbers of X .

Note that, in the case of surfaces, the Hodge Index Theorem can be proved without using the
Hodge decomposition, and it is true for arbitrary fields. The group N1(X) is defined to be the
group of linear equivalence classes of divisors on X modulo divisors numerically equivalent to
zero, i.e. divisors D such that D · D′ with any divisor class D′ on X is equal to zero (see [28],
Chapter 5, Theorem 1.9). The Lorentzian vector space in this case is N1(X)R.

Example 1.2. LetX be a complete intersection in Pk+d. This means thatX is defined in Pd+k by k
homogeneous equations of some degrees (a1, . . . , ak). We assume, as before, that d = 2m, where
m is odd. The Lefschetz Theorem on a hyperplane section asserts that the restriction homomorphism

H i(Pd+k,Z)→ H i(X,Z)

is bijective for i ≤ d− 2. This implies that

H2i(X,Z) = Zηi, i < d,

where η is the class of a hyperplane section. Thus the condition (1.4) is satisfied, and we conclude
that Nm(X) defines an integral structure on the Lorentzian vector space Nm(X)R.
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Another example of ocurrence of vector spaces with a hyperbolic signature in algebraic geome-
try is provided by the Beauville-Bogomolov quadratic form on the cohomology of a holomorphic
symplectic variety X .

A holomorphic symplectic complex connected manifold is a compact complex Kähler manifold
X such H0(X,Ω2

X) is generated by a nowhere vanishing holomorphic 2-form α (a holomorphic
symplectic form). On each tangent space TxX the form defines a non-degenerate skew-symmetric
2-form, hence dimX = dimTxX = 2n. The wedge nth power of α is a nowhere vanish-
ing 2n-form, hence KX = 0. By Bogomolov’s Decomposition Theorem, any simply-connected
compact Kähler manifold M with KM = 0 is isomorphic to the product of simply-connected
holomorphic symplectic manifolds with H0(X,Ω∗X) = C[ω] and Calabi-Yau manifolds satisfying
H0(M,Ωk

M ) = 0, 0 < k < dimM .

Definition 1.1. An irreducible holomorphic symplectic manifold is a holomorphic symplectic com-
plex connected manifold satisfying H0(X,Ω∗X) = C[ω].

In particular, such a manifold satisfies b1(X) = 0.

The second cohomology group H2(X,R) of an irreducible holomorphic symplectic manifold of
dimension 2n is equipped with a quadratic form qBB, the Beauville-Bogomolov form: It is defined
by the property that

qBB(γ) = 1
2n

∫
X
γ2(α ∧ ᾱ)n−1 + (1− n)

(∫
X
γαn ∧ ᾱn−1

)(∫
X
γαn−1 ∧ ᾱn

)
,

where α is a nonzero holomorphic 2-form on X normalized by the condition that
∫
X α

n ∧ ᾱn = 1.

We have
γn = cqBB(γ)n,

for some constant c (called the Fujiki constant) such that qBB defines a primitive quadratic form on
H2(X,Z) with values in Z. The quadratic form qBB is of signature (3, b2− 3) and is invariant with
respect to deformations. The Hodge decomposition H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)
is an orthogonal decomposition with respect to the Beauville-Bogomolov form qBB. Its signature
on H1,1(X,R) is (1, b2 − 3). It has an integral structure defined by H2(X,Z).

In the case n = 2, an irreducible holomorphic symplectic manifold is a Kähler K3 surface (all K3
surfaces are Kähler). We will discuss these surfaces later.
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Lecture 2

Hyperbolic space Hn

A hyperbolic n-dimensional space is a n-dimensional Riemannian simply connected space Hn of
constant negative curvature. The following are standard models of this space (see [1]).

Let V be a Minkowski vector space of dimension n + 1 with the quadratic form q : V → R of
signature (1, n). We denote the corresponding symmetric bilinear form by (x, y). Let

V + = {v ∈ V : q(v) > 0}

be the the interior of the real quadric q = 0 in V . The Lobachevsky (or projective) model of Hn is
the image of PV + in the real projective space P(V )/R∗. Choose an orthogonal decomposition of
V as the orthogonal sum Rv0 ⊕ V1, where q(v0) = 1. The projection to V1 defines a bijection from
PV + to the unit real n-dimensional ball

Bn = {v ∈ V1 : q(v) < 1}.

Choose the coordinates t0, . . . , tn in V such that q = t20 − t21 − · · · − t2n (we call such coordinates
standard coordinates). The space V will be identified with the standard Lorentzian space R1,n. If
we pass to affine coordinates by setting xi = ti/t0, then

Bn = {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n < 1}.

The model of Hn equal to V+, or, equivalently, Bn is called the projective or the Klein model. The
distance between two points d(x, y) in this model is equal to

d(x, y) =
1

2
| lnR(a, x, y, b)|,

where R(a, b, xy) is the cross ratio of the four points (a, x, y, b) on the line in P(V ) joining the
points x, y, where the points a, b are the ends of the line, i.e. the points where the line intersects the
quadric q = 0. We also assume that the points are ordered a < x < y < b. It does not spoil the

7
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symmetry of the distance d(x, y) = d(y, x). The Riemannian metric in coordinates (x1, . . . , xn) in
Bn is equal to

ds2 =
(1− |x|2)

∑n
i=1 dx

2
i + (

∑n
i=1 xidxi)

2

(1− |x|2)2
,

where |x|2 =
∑n

i=1 x
2
i .

Another model is obtained by representing points in PV + by vectors v with norm q(v) = 1. In the
standard coordinates, it is a 2-sheeted hyperboloid. We further fix one of its connected components,
say defined by t0 > 0. This model is called a vector model of Hn.

The distance in the vector model is defined by

cosh d(x, y) = (x, y). (2.1)

The Riemannian metric in this model is induced by the standard constant hyperbolic metric−dx2
0 +

dx2
1 + · · ·+ dx2

n on V .

The third model is the Poincaré model or the conformal model. As a set, it is still the ball Bn as
above. However, the metric is different. It is given by

ds2 = 4(1− |u|2)−2
n−1∑
i=1

du2
i .

The isomorphism of Riemannian spaces from the Klein model Bn to the Poincaré model ′Bn is
defined by the composition of the projection from Bn to the southern hemisphere of the boundary
of B̄n+1 and then the stereographic projection from the southern pole to the Euclidean plane.

Recall that a geodesic line in a Riemannian manifold M is a continuous map γ : R → M such
that d(γ(a), γ(b)) = |a− b|. We also refer to the image of γ as a geodesic (unparameterized) line.
For any two distinct points x, y ∈ M there exists a closed interval [a, b] and a geodesic γ with
γ(a) = x, γ(b) = y. It is called the geodesic segment. In Hn, such a geodesic is unique and realizes
the shortest curve arc from x to y.

For example, the geodesic lines in the Klein model of H2 are non-empty intersection of lines in
R2 with the interior of the unit disc.

l1

l2

l3

Figure 2.1: Lines on hyperbolic plane in Klein model

Here the lines l1 and l2 are parallel and the lines l1(l2) and l3 are divergent.
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Finally, we have the upper half plane model of Hn. It is equal to the Cartesian product Rn−1×R+.
If we take the coordinates (w1, . . . , wn−1, wn) with wn > 0, then the bijection from this model to
the Klein model is given by the formula

yi =
2xi
ρ2
, i = 1, . . . , n− 1, yn =

1− |x|2

ρ2
, (2.2)

where ρ2 = |x|2 + 2xn + 1. In the case n = 2, this is the standard biholomorphic mapping from
the unit disk |z| < 1 to the upper-half plane.

The Riemannian metric on the upper-half space model is given by

ds2 = y−2
n

n∑
i=1

dy2
i .

Figure 2.2: Lines on hyperbolic plane in the upper-half plane model

Let us summarize the formulas for the isometries between the four models of Hn.

V-K :
(t0, . . . , tn) 7→ (x1, . . . , xn) = (t1/t0, . . . , tn/t0).

K-V :

(x1, . . . , xn) 7→ (
1

1− |x|2
,

x1

1− |x|2
, . . . ,

xn
1− |x|2

).

K-P :
(x1, . . . , xn) 7→ (u1, . . . , un) = (

x1

1 + (1− |x|2)1/2
, . . . ,

xn

1 + (1− |x|2)1/2
).

P-K :

(u1, . . . , un) 7→ (x1, . . . , xn) = (
2u1

1 + |u|2
, . . . ,

2un
1 + |u|2

).
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P-U :

(u1, . . . , un) 7→ (y1, . . . , yn) = (
2ui
ρ2
, . . . ,

2un−1

ρ2
,
1− |u|2

ρ2
), ρ2 = |u|2 + (2un + 1).

U-P :

(y1, . . . , yn) 7→ (u1, . . . , un) = (
2yi
ρ2
, . . . ,

2yn−1

ρ2
,
|y|2 − 1

ρ2
), ρ2 = |y|2 + (2yn + 1).

Here V,K, P, U stands for the vector, Klein, Poincaré and upper-half space models.

When n = 2, the Klein model, Poincaré and the upper-half plane models acquire a structure of a
complex 1-manifold with coordinates z = a + ib, u = u1 + iu2, y = y1 + iy2, respectively. The
first two models are the unit disks |z| < 1, |u| < 1 and the upper-half model is defined by y2 > 0.
We have

y = i
z + 1

z − 1
, z =

y − i
y + i

, z =
2u

1 + |u|2
, u = z

1−
√

1− |z|2
|z|2

.

Note that the last two maps are a not biholomorphic but just conformal maps. They relate the the
Klein and Poincaré metrics in the unit disk.

We already know how the geodesic lines look like in the Klein model. Let us see how do they
look in the Poincaré model. First we assume that a line is given by equation y1 = c, where |c| < 1.
Assume c 6= 0. Then, using the previous formulas, we obtain that the image of this line in the
Poincaré model is the circle

(u1 − c−1)2 + u2
2 = c−2 − 1.

Its center (c−1, 0) lies outside the (open) unit disk. It intersects the boundary u2
1 + u2

2 = 1 at

two points (±
√

1− c2

4 ,
c
2) and it is orthogonal to the boundary at these points. In the special case

when c = 0, the image is the diameter line u1 = 0 of the disk. Now, any line a, b with the
boundary points a = e2iφ, b = e2iψ is equal to the image of the vertical line u1 = c under the
transformation z 7→ e−(ψ+φ)z. It is easy to see that, under the conformal bijection between the two
disks, this transformation is also a rotation. This shows that the image of a general line is an arc of
a circle orthogonal to the boundary of the segment of a line passing through the origin. This gives a
description of geodesic lines in the Poincaré model of H2. Here the lines are parallel if their closure
intersect at one point on the absolute.

The closure in its projective model is the set

Hn
= {(t0, . . . , tn) ∈ Rn+1 :

n∑
i=0

t2i ≥ 0}/R∗ ⊂ Pn(R).

Its boundary is the real quadric in Pn(R)

∂Hn = {(t0, . . . , tn) ∈ Rn+1 :
n∑
i=0

t2i = 0}/R∗ ⊂ Pn(R).
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Figure 2.3: Lines on hyperbolic plane in the Poincaré model

Following F. Klein, it is called the absolute of Hn. In the Klein or Poincaré models, the absolute is
the (n−1)-dimensional sphere, the boundary of the open n-ball. In the usual way, we may consider
the absolute as a one-point compactification of the Euclidean space En−1. This can be achieved by
the stereographic projection from the north pole p = [1, 1, . . . , 0] ∈ ∂Hn to the hyperplane t0 = 0
identified with Pn−1(R) with projective coordinates t1, . . . , tn.1 For any point x = [a0, . . . , an] 6=
p, its projection is equal to the point [a0 − a1, a2 . . . , an] ∈ Pn−1(R). Since (a0 − a1)(a0 + a1) =
a2

2 + · · ·+ a2
n, the first coordinate a0 − a1 is not equal to zero. Thus the projection of ∂Hn \ {p} is

contained in the affine set t1 6= 0 which we can identify with the Euclidean space Rn. It is easy to
see that it coincides with this affine set, so ∂Hn can be identified with Ên := En ∪ {p}.

1we use the notation [a0, . . . , an] for the projective coordinates in Pn(R), other standard notation is (a0 : a1 : . . . :
an).
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Lecture 3

Motions of a hyperbolic space

A motion or an isometry of a Riemannian manifold is a smooth map of manifolds that preserves
the Riemannian metric. In our case the group of motions consists of projective transformations that
preserve the projective model of Hn. When we choose the standard coordinates this group is the
projective orthogonal group PO(1, n). We denote it by Iso(Hn). Note that PO(1, n) is isomorphic
to the index 2 subgroup O(1, n)′ of O(1, n) that preserves the connected components of the 2-
sheeted hyperboloid {x ∈ R1,n : q(x) = 1}. The group Iso(Hn) is a real Lie group, it consists of
two connected components. The component of the identity Iso(Hn)+ consists of motions preserving
an orientation.

A discrete subgroup Γ of Iso(Hn)+ is called a Kleinian group. Sometimes this name is reserved
only for subgroups of Iso(H3)+. In this case, Iso(H3)+ is isomorphic to PSO(1, 3). The double
cover of this group is the group Spin(1, 3) isomorphic to SL(2,C), so a Kleinian group becomes
isomorphic to a discrete subgroup of the group PSL(2,C) of Moebius transformations z 7→ az+b

cz+d

of the complex projective line P1(C).

Let Γ be a discrete subgroup of Iso(Hn). It acts on Hn totally discontinuously, i.e., for any compact
subset K, the set of γ ∈ Γ such that γ(K)∩K 6= ∅ is finite. In particular, the stabilizer of any point
is a finite group. The action extends to the absolute, however here Γ does not act discontinuously.
We define the limit set Λ(Γ) to be the complement of the maximal open subset of ∂Hn where Γ acts
discretely. It can be also defined as the closure of the orbit Γ · x for any x ∈ Hn. It is also equal to
the closure of the set of fixed points on ∂Hn of elements of infinite order in Γ. For any γ ∈ Γ there
are three possible cases:

• γ is hyperbolic: there are two distinct fixed points of γ in ∂Hn;

• γ is parabolic: there is one fixed point of γ in ∂Hn ;

• γ is elliptic: γ is of finite order and has a fixed point in Hn;

Let γ be a hyperbolic isometry. Then there exists a hyperbolic plane U in V generated by isotropic

13
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vectors u, v with (u, v) = 1 such that γ(U) = U and γ|U is given by the matrixA(λ) =
(
λ 0
0 λ−1

)±1

for some λ > 1. The fixed points of γ on ∂Hn are represented by the vectors u and v. The distance
between two points x = [etu + e−tv], y = [et

′
u + e−t

′
v] represented by vectors with norm 1 on

the geodesic γ = P(U) ∩ H2 ⊂ Hn is equal to 1
2 ln |R|, where R is the cross-ratio of the points

(0, x, y,∞). It is equal to e2(t−t′), so we get d(x, y) = |t − t′|. So, we see that t is the natural
parameter on the geodesic γ, and the isometry γλ with |λ| = |t − t′| moves x to the point γ(x)
with d(x, γ(x)) = |λ|. It also shows that one can identify the geodesic γ with the one-parameter
subgroup {gt}t∈R defined by the matrix eA(λ)t. It is called the axis of g. Also, we see that, any
geodesic is a geodesic in some 2-dimensional hyperbolic subspace of Hn.

Let γ be a parabolic isometry. Then there exists an isotropic vector u such that [u] ∈ ∂Hn

is fixed by γ. Then γ leaves invariant u⊥ and acts naturally on u⊥/Ru ∼= R0,n−1. One can
choose a hyperbolic plane U as above with a basis u, v and a vector w ∈ U⊥ such that γ leaves

invariant U ⊕ Rw and is given in the basis (u,w, v) by the matrix
(

1 1 1
2

0 1 1
0 0 1

)
. Let us take a one-

parameter subgroup generated by a parabolic isometry γ. It consists of transformations γt given by

the matrices
(

1 t t2

2
0 1 t
0 0 1

)
. It is clear that γ acts in u⊥/Ru that we can identify with U⊥ ∼= R0,n−1.

If we change the sign of the quadratic form, this becomes the Euclidean vector space. It embeds
in Hn via the map [x] 7→ [x + cv + u]. The image is the intersection of Hn with the hyperplane
Hu(c) = {x ∈ V : (x, u) = c}/R∗. It is called a horosphere in Hn. Its closure in Hn contains the
points [x + cv + u], (x, x) = −2c in the absolute. This is the image of a sphere in the Euclidean
space u⊥/Ru of radius r =

√
2c. For example, when n = 2 and we have a basis (u,w, v) as above,

the closure of the horosphere Hu(c) intersects the boundary at one point [u+ cv+
√
−2cw]. In the

Klein model, if we take u = [ 1√
2
, 1√

2
, 0], v = [ 1√

2
,− 1√

2
, 0], w = [0, 0, 1], then [u] = (1, 0), [v] =

(−1, 0), [w] = (0, 0) in the closed disk. The horosphere becomes the set of points (1−c
1+c ,

α
1+c),

i.e. the vertical line z1 = 1−c
1+c , where α2 < 1 + 2c. Its image in the Poincaré plane is the set

{(u1, u2) : 2u1 = 1−c
1+c(1 + u2

1 + u2
2)}. Its closure is the circle

(u1 − a)2 + u2
2 = a2 − 1, a =

1− c
1 + c

.

Its center lies outside the unite disk, and it is tangent to the boundary at the point with u1 = 1−c
1+c .

All horospheres (or rather horocircles) are circles tangent to the boundary at one point. The orbits
of one parameter subgroups are horospheres.

A geodesic line in Hn is the intersection of Hn with a line in Pn(R) corresponding to a hyperbolic
plane P . in R1,n. Consider a pencil Pe of lines passing through a fixed point [e] ∈ Pn(R).

Let [v] ∈ Hn be a point on a line from Pe and c = (v, e). Then the image He(c) of the affine
hyperplane {x ∈ R1,n : (x, e) = c} in Pn(R) is equal to the image of the translate He(0) + v
of the homogeneous hyperplane He(0). We have He(c) = Hλe(λc). Its normal vector is e and it
is orthogonal to all vectors x − v ∈ He(c). If [e] ∈ Hn and [v] ∈ He(c), we may assume that
(e, e) = 1, (v, v) = 1, (e, v) = c (we must have c > 1 in this case) then cosh d(e, v) = (e, v) = c,
so we may think that the hyperplaneHe(c) is the locus of points in H with hyperbolic distance from
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Figure 3.1: Parabolic pencil in the Poincaré model

Figure 3.2: Elliptic pencil in the upper-half plane model

[e] equal to c. It is hyperbolic ball Be(c)+ of radius c and center [e]. The pencil Pe in this case is
called elliptic pencil of lines.

If (e, e) < 0, then He(0) ∩ Hn 6= ∅ and Pe consists of lines perpendicular to He(0). The
hyperplanes He(c) are also perpendicular to all lines in the pencil. This is a hyperbolic pencil
of lines. If [x] ∈ He(c), we can define the distance from [e] to [x] as the distance from [x] to the
hyperplane He(0). Thus He(c) ∩ Hn can be viewed as the set of all points x ∈ H such that the
distance from x to [e].

Finally, if (e, e) = 0, Then He(c) is invariant with respect to the translations [x] 7→ [x + λe] =
[λ−1x + e]. So, He(c) is invariant with respect to parabolic transformation which fix [e]. It is a
horosphere with center at [e]. When λ goes to zero, the limit point is equal to [e]. So, the closure
of He(c) is the point [e] on the absolute. At each intersection point, a line from the pencil Pe
is perpendicular to He(c). The pencil in this case is called a parabolic pencil of lines. Fix e by
choosing another isotropic vector e′ with (e, e′) = 1, and then fix the horosphere He(1). We define
the distance between [e] and [x] ∈ Hn as the distance from [x] to the horosphere He(1). This leads
to the definition of a ball Be(c)0.
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Figure 3.3: Hyperbolic pencil in the upper-half plane model

Figure 3.4: Parabolic pencil in the upper-half plane model

Proposition 3.1. Let [e] ∈ Pn(R) and [x] ∈ Hn. Then

(x, e) =


cosh d([x], [e]) if , (e, e) = (x, x) = 1,

sinh d([x], [e]) if , (e, e) = −1, (x, x) = 1, (x, e) = 0,

exp(d(x, [e])) if (e, e) = 0, (x, x) = 1, (x, e) = −1.

Proof. If [e] ∈ Hn, this follows from the formula for the distance in the vector model of Hn. If
(e, e) = −1, we parameterize a line joining [e] with [x] as [−e sinh(t)+cosh(t)x], where t is the nat-
ural (distance) parameter on the line ( [?], Chapter 4,2.2.3). We assume that it measures the distance
from the point in the intersection of the line with He(0). This shows that (x, e) = sinh d([e], [x]).
Similarly, if (e, e) = 0, we parameterize a line joining [e] with [x] as [−e sinh(t) + exp(t)x], where
t is the natural parameter which measures the distance from the point in the intersection of the line
with the horosphere He(1). This gives exp(d([e], [x]) = (x, e).

A non-empty subset A of a metric space is called convex if any geodesic connecting two of its
points is contained in A. Its closure is called a closed convex subset. A closed convex subset P of
Hn is equal to the intersection of half-spaces H±ei , i ∈ I . It is assumed that none of the half-spaces
Hei contains the intersection of other half-spaces. A maximal non-empty closed convex subset of
the boundary of P is called a side. Each side is equal to the intersection of P with one of the
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bounding hyperplanes Hei . The boundary of P is equal to the union of sides and two different sides
intersect only along their boundaries.

A convex polyhedron in Hn is a convex closed subset P with finitely many sides. It is bounded by
a finite set of hyperplanes Hi.

We choose the vectors ei as in the previous section so that

P =
N⋂
i=1

H−ei . (3.1)

The dihedral angle φ(Hei , Hej ) between two proper bounding hyperplanes is defined by the for-
mula

cosφ(Hei , Hej ) := −(ei, ej).

If |(ei, ej)| > 1, the angle is not defined, we say that the hyperplanes are divergent. In this case the
distance between He and He′ can be found from the formula

cosh d(He, He′) = |(e, e′)|. (3.2)

For any subset J of {1, . . . , N} of cardinality n − k, such the intersection of Hei , i ∈ J, is a k-
plane Π in Hn, the intersection P ∩Π is a polyhedron in Π. It is called a k-face of P . A (n−1)-face
of P is a side of P .

The matrix
G(P ) = (gij), gij = (ei, ej),

is called the Gram matrix of P . There is a natural bijection between the set of its k-dimensional
proper faces and positive definite principal submatrices ofG(P ) of size n−k. The improper vertices
of P correspond to positive semi-definite principal submatrices of size n.

Recall that a closed subset D of a metric space X is called a fundamental domain for a group Γ of
isometries of X if

(i) the interior Do of D is an open non-empty set;

(ii) γ(Do) ∩Do = ∅, for any γ ∈ Γ \ {1};

(iii) the set of subsets of the form γ(D) is locally finite1;

(iv) X =
⋃
γ∈Γ γ(D);

A group Γ admits a fundamental domain if and only if it is a discrete subgroup of the group of
isometries of X . For example, one can choose D to be a Dirichlet fundamental domain

D(x0) = {x ∈ X : d(x, x0) ≤ d(γ(x), x0), for any γ ∈ Γ}, (3.3)
1This means that every point x ∈ Hn is contained in a finite set of subsets γ(D)
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where x0 is a fixed point in X and d(x, y) denotes the distance between two points. Assume X =
Hn. For any γ ∈ Γ \ Γx0 , let Hγ be the hyperplane of points x such that d(x0, x) = d(x, γ(x0)).
Then D(x0) = ∩γ∈Γ\Γx0

H−γ and, for any γ 6∈ Γx0 , S = γ(D(x0)) ∩ D(x0) ⊂ Hγ is a side in
∂D(x0). Each side of D(x0) is obtained in this way for a unique γ.

A fundamental domain D for a Kleinian group Γ in Hn is called polyhedral if its boundary ∂D =
D \ Do is contained in the union of a locally finite set of hyperplanes Hi and each side S of the
boundary is equal to D ∩ γ(D) for a unique σS ∈ Γ. A Dirichlet domain is a convex polyhedral
fundamental domain.

A choice of a polyhedral fundamental domain allows one to find a presentation of Γ in terms of
generators and relations. The set of generators is the set of elements γS ∈ Γ, where S is a side of
D. A relation γSt ◦ · · · ◦ γS1 = 1 between the generators corresponds to a cycle

D0 = D,D1 = γS1(D0), . . . , Dt = γSt ◦ · · · ◦ γS1(D0) = D0.

Among various equivalent definitions of a geometrically finite Kleinian group we choose the fol-
lowing one (see [2], Chapter 4, §1): A Kleinian group Γ is called geometrically finite if it admits a
polyhedral fundamental domain with finitely many sides. 2 It follows from above that such a group
is finitely generated and finitely presented. The converse is true only in dimension n ≤ 2. In di-
mensions n ≤ 3, one can show that Γ is geometrically finite if and only if there exists (equivalently
any) a Dirichlet fundamental domain with finitely many sides (loc. cit., Theorem 4.4). On the other
hand, for n > 3 there are examples of geometrically finite groups all whose Dirichlet domains have
infinitely many sides (loc. cit. Theorem 4.5).

2Other equivalent definition is given in terms of the convex core of Γ, the minimal convex subset of Hn that contains
all geodesics connecting any two points in Λ(Γ).



Lecture 4

Automorphism groups of algebraic
varieties

For any projective algebraic variety X over a field k one can define a group scheme Aut(X) of
automorphisms of X . Its set of k-points is the group Aut(X) of automorphisms of X over k. Over
a field of arbitrary characteristic it is a group scheme of locally finite type, not necessary reduced.
The connected component of the identity Aut0(X) is a group scheme of finite type, the reduced
scheme is an algebraic group. We denote its set of k-points by Aut(X)0. The group

Autc(X) := Aut(X)/Aut(X)0

is called the group of connected components of the automorphism group of X .

Over C, Aut(X) has a natural structure of a complex Lie group whose connected component
of the identity Aut(X)0 is a complex algebraic group. The group of connected compoennsts
Aut(X)/Aut(X)0 is a countable discrete group..

Let Aut(X) = Aut(X)(K), where X is defined over an algebraically closed field k, considered
as an abstract group. It has a natural linear representation

αk : Aut(X)→ GL(Nk(X)), g 7→ g∗

such that
αk(g)(x) · αn−k(g)(y) = x · y, x ∈ Nk(X), y ∈ Nn−k(X).

Here we use the notation x · y for the intersection number of two numerically equivalence classes
of algebraic cycles. Over C it coincides with the cup-product of the corresponding cohomology
classes. In particular, when d = 2m, this defines a homomorphism

α : Aut(X)→ O(Nm(X)),

19
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where O(Nm(X)) is the orthogonal group of the quadratic latticeNm(X). The groupAut0(X)(K)
sits in the kernel of α, so the homomorphism factors through the group Autc(X) of connected
components of Aut(X) and defines a homomorphism

αc : Autc(X)→ O(Nm(X)).

One can show that the kernel of this homomorphism is a finite group. We denote by Aut(X)∗ the
image of α in O(Nm(X)).

Recall that any nonsingular algebraic variety X of dimension d carries a distinguished divisor
class in the Picard group Pic(X), the canonical classKX . Over C, it is a distinguished cohomology
class in H1,1(X,Z) equal to the negative of the first Chern class c1(X) of the holomorphic tangent
bundle of X . Under the identification of the Picard group with the group of isomorphism classes of
invertible sheaves, it corresponds to the sheaf Ωd

X of differential d-forms.

The canonical class KX is invariant with respect to any automorphism of X , i.e. g∗(KX) = KX ,
for any g ∈ Aut(X). If d = 2m, the m-th self-product Km

X := KX · · ·KX is an invariant class in
the group of algebraic cycles CHm. We denote by kX its image in Nm(X) (or in Hd(X,Z) when
k = C). The group Aut(X)∗ stabilizes the vector kX , and, hence

Aut(X)∗ ⊂ O(Nm(X))kX .

Suppose kX 6= 0, let k⊥X denote the orthogonal complement of ZkX in Nm(X). Then we can
identify Aut(X)∗ with its image under the natural homomorphism O(Nm(X))kX → O(k⊥X). That
allows us to consider Aut(X)∗ as a subgroup of O(k⊥X).

Theorem 4.1. Assume Nm(X)R has hyperbolic signature (1, n), i.e. d ≡ 2 mod 4. Then
Aut(X)∗ is a finite subgroup of Iso(Hn) if k2

X > 0 and an elementary geometrically finite group if
k2
X = 0.

Proof. Suppose k2
X > 0, then k⊥X is a negative definite quadratic lattice. The group Aut(X)∗ is a

discrete subgroup of the compact Lie group O(k⊥X) ∼= O(n), so it is finite.

If k2
X = 0, the lattice R = k⊥X/ZkX is negative definite and O(k⊥X) is isomorphic to the semi-

direct product Ro O(R). It contains a free finitely generated abelian subgroup of finite index.

Suppose X is a nonsingular projective algebraic surface over an algebraically closed field k. It
is called a minimal model if any birational morphism X → X ′ is an isomorphism. The theory of
minimal models tells us that a minimal model satisfies one of the following properties

(i) KX is nef , i.e. KX · [C] ≥ 0 for any divisor class [C] of a curve C on X ,

(ii) there exists a morphism X → C to a nonsingular curve C with fibers isomorphic to P1;

(iii) X ∼= P2.
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For any X there exists a birational morphism X → Y , where Y is a minimal model. In case (i),
Y is unique (up to isomorphism) and is denoted by Xmin. Surfaces X admitting a unique minimal
model Xmin satisfying (i) are called surfaces of non-negative Kodaira dimension. We will explain
the reason for the name a little later.

It is known that any birational morphism f : X → Y of nonsingular projective algebraic surfaces
is equal to the composition of the birational morphisms

X = Xk → Xk−1 → · · · → X1 → X0 = Y,

where each morphism fi : Xi → Xi−1 is the blow-up of a point xi ∈ Xi−1. This means that
Ei = f−1

i (xi) ∼= P1 and fi : Xi \ Ei → Xi−1 \ {xi} is an isomorphism. The curve Ei on
Xi is called an exceptional curve of the blow-up. Its divisor class [Ei] satisfies [Ei] · [Ei] = −1.
Conversely, for any curve E on X with these properties there exists a blow-up X → X ′ with the
exceptional curve E. We say also that the morphism is the blowing down of E. It follows that a
minimal model is characterized by the property that it does not contain curves isomorphic to P1

with self-intersection equal to −1 (called (−1)-curves).

The images y1, . . . , yk of the points x1, . . . , xk in P2 under the composition of the blow-up maps
could be a set of< k points in P2. Netherless, abusing the definition, we say thatX is isomorphic to
the blow-up of points x1, . . . , xk in Y . Points xj which are mapped to same point yi ∈ P2 are called
infinitely near to yi. If all yi are different, we will identify them with the points xi (this happens
then the composition Xi → Y is an isomorphism in an open neighborhood of xi).

The other important corollary of the theory of minimal models is the isomorphism

Bir(Xmin) ∼= Aut(Xmin),

where Bir(X) denotes the group of birational isomorphisms of X , isomorphic to the group of
automorphisms of the field of rational functions on X acting identically on constants.

For any surface of non-negative Kodaira dimension, we have

Aut(X) ⊂ Bir(X) ∼= Bir(Xmin) ∼= Aut(Xmin).

All algebraic surfaces are divided into the four classes according to their Kodaira dimension
kod(X) taking values in the set {−∞, 0, 1, 2}. Recall that a divisor class D on an algebraic variety
X is called effective if it is linearly equivalent to a non-negative linear combination of irreducible
subvarieties of codimension 1. The set of all effective divisors in the same linear equivalence class
of a divisor D is denoted by |D|. It is called the complete linear system associated to the divi-
sor class [D] of D. It can be identified with the projective space of lines |D| in the linear space
H0(X,OX(D)), where OX(D) is the invertible sheaf associated to the divisor D. If |D| 6= ∅, a
choice of a basis s0, . . . , sN of H0(X,OX(D)) defines a rational map X 99K PN . It assigns to a
point x ∈ X , the point in PN with projective coordinates [s0(x), . . . , sN (x)]. The pre-image of a
hyperplane in PN is a divisor from |D|. Every rational map f : X 99K PN is defined by a subspace
of a complete linear system |D|.
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The Kodaira dimension is defined by any of the following equivalent properties

• dim |mKX | grows like mkod(X) (kod(X) := −∞ if |mKX | = ∅ for all m > 0);

• kod(X) is the dimension of the image of a rational map defined by |mKX | for m >> 0;

• kod(X) is the transcendence degree of the field of homogeneous fractions of the graded ring

R(X) := ⊕m≥0H
0(X,OX(mKX)).

The Kodaira dimension is a birational invariant of X .

Theorem 4.2. Let X be a nonsingular projective surface over k. Then kod(X) = −∞, if and only
if X is birationally isomorphic to a minimal surface of type (ii) or (iii). If kod(X) ≥ 0, then one of
the following cases occurs:

(i) kod(X) = 2,K2
Xmin > 0 ;

(ii) kod(X) = 1,K2
Xmin = 0, kXmin 6= 0;

(iii) kod(X) = 0, kXmin = 0.

Corollary 4.3. Suppose Aut(X)∗ is an infinite group. Then one of the following cases occurs:

(i) kod(X) = 0 or 1;

(ii) there exists a birational morphism f : X → P2.

Proof. It follows from Theorem 4.1 that Aut(X)∗ is finite if kod(X) = 2. Suppose kod(X) =
−∞, and let f : X → Y be a birational morphism onto a minimal model different from P2. Let
π : Y → C be a P1-fibration on Y . Since C is a curve, one can show that such a fibration is the
projective bundle associated with a rank 2 vector bundle over C.

If C 6= P1, then the P1-fibration π : Y → C is unique. In fact, any other such fibration π′ : Y →
C ′ defines a surjective map from a general fiber of π′ isomorphic to P1 to the curve C. This implies
that C is a curve of genus 0 and hence isomorphic to P1. This show that π′ does not exist. Now we
have a natural homomorphism Aut(Y )0 → Aut(C)0 whose kernel K is a group of automorphisms
of Y that send any fiber of π ◦ f : X → C to itself. Over an open subset of C, a fiber of π ◦ f
is isomorphic to P1. A subgroup of the group of automorphisms of a projective algebraic variety
that leaves invariant a closed algebraic subvariety is given by algebraic equations. Hence K is an
algebraic subgroup of Aut(P1), and hence its group of connected components is finite. This shows
that Autc(X) is finite.

Assume that C ∼= P1. It follows from the classification of vector bundles on P1 that Y is isomor-
phic a Segre-Hirzebruch surfaces Fn, n ≥ 0, n 6= 1. If n = 0, the surface isomorphic to P1 × P1
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which is embedded in P3 via the Segre map. If n ≥ 2, then Fn contains a unique section S0 with
[S0]2 = −n such that the complete linear system |nF + S0|, where F0 is any fiber of π, maps Y
to Pn+1 with the projective cone over a rational normal curve Rn (the image of a Veronese map
P1 → Pn). The pre-image of the vertex of the cone is the curve S0 and the map is an isomorphism
outside S0 onto its image equal to the complement of the vertex. There is one possible case for
a P1-fibration X → P1 when X is isomorphic to the blow-up one point in P2. The fibration is
obtained from the projection map from P2 to P1. The surface obtained in this way is denoted by F1,
it is not a minimal model.

Let n be the smallest possible positive integer such that there exists a birational morphism f :
X → Y ∼= Fn. Let f = f ′ ◦ f1 : X → X1 → Y , where f1 : X1 → Y is the blow-up of a point
x ∈ Y . Let F be the fiber of Y → P1 that contains x. Then its pre-image of F in X1 is equal to the
union of a curve F̄ and the exceptional curve E. The usual properties of intersection theory tells us
that 0 = F 2 = (F̄ + E)2 = F̄ 2 + 2F̄ · E + E2 = F̄ 2 + 1. Obviously F̄ is isomorphic to F . Thus
F̄ is a (−1)-curve on X1 which we can blow-down to get a birational morphism f ′ : X1 → Y ′.

Suppose that x 6∈ S0. Let S̄0 be the image of S0 on Y ′. Then f ′−1(S̄0) = F̄ + S0, and using the
intersection theory, we obtain as above, that S̄2

0 = −n + 1. Thus Y ′ ∼= Fn−1. If n = 0, we get
Y ′ → F1, and then composing X → X1 → F1 → P2, we obtain a birational morphism to P2.

So, we may assume that x ∈ S0. Then a similar argument using the intersection theory gives that
X1 admits a morphism X1 → Y ′ ∼= Fn+1. If n = 0, we are done. If n ≥ 2, then we obtain that Y ′

contains the section S0 with S2
0 = −n − 1 ≤ −3. It is known that any curve on Fn different from

the exceptional section S0 has a non-negative self-intersection. This implies that the proper-inverse
transform (i.e. the full pre-image minus the curves whose image under the birational map is a point)
of S0 on X is a unique curve S with self-intersection ≤ −3.1 The group of automorphisms of X
must leave S invariant. This gives a natural homomorphism Aut(X)→ Aut(S) ∼= Aut(P1) whose
kernel and image is an algebraic group. This proves that Autc(X) is finite.

A rational surface X that admits a birational morphism to the projective plane will be called a
basic rational surface.

If k = C, X is a smooth 2d-manifold, so we can define the usual topological invariants of X
such as the Betti numbers bi(X) or the Euler-Poincaré characteristic e(X) =

∑
(−1)ibi(X). In the

general case, this can be also done by using the étale l-adic cohomology.

Let π : X ′ → X be the blow-up of a point x ∈ X with the exceptional curve E. Then it is easy to
see that H i(X; ,Z) = π∗(H i(X,Z)) if i 6= 2, and

H2(X,Z) = π∗(H2(X,Z)⊕ Z[E]. (4.1)

1Here we use that the self-intersection of the proper transform of a curve under a blow-up a point decreases by 1.
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In particular, we have

bi(X
′) = bi(X), i 6= 2, b2(X ′) = b2(X) + 1,

and
Pic(X ′) = π∗(Pic(X))⊕ Z[E]. (4.2)

The latter two equalities make sense over any field.

Another useful fact is that
KX′ = π∗(KX) + [E]. (4.3)

In particular,
K2
X′ = K2

X − 1.

Applying Theorem 4.1, we obtain

Corollary 4.4. Suppose Aut(X)∗ is a non-elementary discrete group in O(Nm(X)R). Then
kod(X) = 0 or X is the blow-up of N ≥ 10 points in P2.

The topological invariants are related to the algebraic invariants

q = dimH1(X,OX), pg = dimH2(X,OX)

via the Noether Formula
12χ(OX) = K2

X + e(X), (4.4)

where χ(OX) = 1− q + pg.

It is known that surfaces with Kodaira dimension 1 are elliptic sirfaces, i.e.they admit a morphism
to a curve C such that the general fiber is a curve F with KF = 0. Over C (or over any field of
characteristic 6= 2, 3) it is a smooth curve of genus 1. The fibration is unique, and the group of
automorphisms fits into an extension

1→ K → Aut(X)→ G→ 1,

where G is a subgroup of Aut(C). The group K is a finitely generated abelian group. So, it follows
that Autc(X) is an elementary group.

Theorem 4.5. Let X be a minimal surface with kod(X) = 0. Then K2
X = 0 and possible values

of b1(X), b2(X), e(X), χ(OX) are given in the following table.

Over C, all K3 (resp. Enriques, resp. abelian) surfaces are diffeomorphic. A K3 surface is simply-
connected, and the universal cover of an Enriques surface is of degree 2 and is a K3 surface. An
abelian surface is a complex torus C2/Λ. We have

q = h1,0(X) = 1
2b1(X)
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Name b2 b1 e χ KX

K3 22 0 24 2 KX = 0
Enriques 10 0 12 1 2KX = 0
Abelian 6 4 0 0 KX = 0

Bielliptic 2 2 0 0 mKX = 0,m = 2, 3, 4, 6

Table 4.1: Surfaces with kod(X) = 0

and
pg = dimH0(X,Ω2

X) = dimH0(X,OX(KX)).

Thus we have q = 0, pg = 2 for a K3 surface, q = 0, pg = 0 for an Enriques surface, and
q = 2, pg = 1 for an abelian surface. We will discuss these surfaces later.

We will not be interested in bielliptic surfaces. In this case

O(N1(X)R) ∼= O(R1,1 ∼= Ro Z/2Z,

so its discrete subgroups are not very interesting.

It is known that N1(X) = Pic(X) = NS(X) if X is a K3 surface. Also Pic(X) = NS(X) and
N1(X) = NS(X)/ZKX for an Enriques surface.

It follows from (1.6) that the Picard number of a complex surface of Kodaira dimension 0 satisfies
the following inequality 

1 ≤ ρ ≤ 20 if X is a K3 surface,
ρ = 10 if X is an Enriques surface,
1 ≤ ρ ≤ 4 if X abelian surface,
2 if X is a bielliptic surface.

Note that in positive characteristic it is possible that the Picard number of a K3 surface (resp. abelian
surface) takes the value 22 (resp. 6) but not 21 (resp. 5).

Let X be a K3 surface over C. Then H2(X,Z) has no torsion, so the Poincaré Duality Theorem
implies that H2(X,Z) is a unimodular lattice of rank 22. The Hodge Index Theorem gives that
the signature of H2(X,R) is equal to (3, 19). Using the fact that KX = 0, one can also prove
that H2(X,Z) is an even lattice. Applying Milnor’s Theorem about classification of unimodular
indefinite quadratic lattices (see [45]), we obtain that

H2(X,Z) ∼= U ⊥ U ⊥ U ⊥ E8 ⊥ E8. (4.5)

Here and later we denote by U (resp. E8) the unique even unimodular even quadratic lattice of
signature (1, 1) (resp. unique unimodular even negative definite lattice of rank 8). The numerical
lattice N1(X) is a primitive sublattice of this lattice.
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Let X be an Enriques surface over C. Then KX generates the torsion subgroup of H2(X,Z) and

N1(X) = H2(X,Z)/ZKX .

Again, by the Poincaré Duality, we obtain that the lattice N1(X) is a unimodular lattice of rank 10
and signature (1, 9). Since kX = 0, the Riemann-Roch Theorem implies that the lattice is even.
Applying Milnor’s Theorem, we obtain that

N1(X) ∼= U ⊥ E8. (4.6)

Let X be an abelian surface. Similar arguments give that

H2(A,Z) ∼= U ⊥ U ⊥ U

and N1(X) is a primitive sublattice of H2(A,Z) of signature (1, ρ− 1).

Example 4.6. Assume X is a complete intersection in Pn+d of dimension n = 2k with k(k− 1)/2
even. Let (a1, . . . , ad) be the degrees of the hypersurfaces that cut out X . Then

KX = (n+ d+ 1− a1 − · · · − ad)h,

hence Kk
X = (n+ d+ 1− a1 − · · · − ad)khk. This implies that, if n+ d+ 1− a1 − · · · − ad > 0,

N1(X)0 is negative definite, and G is finite. If KX 6= 0, the group G of connected components of
Aut(X) is finite. The only interesting case is when X is a Calabi-Yau, i.e.

n+ d+ 1− a1 − · · · − ad = 0.

For example, X is a quartic surface, or X is a 6-dimensional Calabi-Yau.



Lecture 5

Reflection groups of isometries

It is known that the orthogonal group O(1, n) of the space R1,n is generated by reflections

se : v 7→ v − 2
(v, e)

(e, e)
e,

where (e, e) 6= 0. If (e, e) > 0, then se has only one fixed point in Hn, the point [e] ∈ Hn. On
the other hand, if (e, e) < 0, then the set of fixed points is a hyperplane He(0) in Hn. If we write
He(0) by the equation a0x0−

∑
aixi = 0, then its pre-image in the Poincaré model is given by the

equation 2(
∑
aiui) = a0(1+ |u|2). We can rewrite the equation in the form |u−c|2 = −1+

∑ a2
i

e20
,

where c = (a1
e0
, . . . , a1

a0
). It is a sphere with center c and radius-square greater than 1. The reflection

transformation is the inversion with respect to this sphere.

From now on, we will consider only reflections se with (e, e) < 0. It is obvious that ske = se
for any scalar k 6= 0, so we may assume that (e, e) = −1. The composition of two reflections
se and se′ depends on (e, e′). If (e, e′) = 0, they commute, so that se ◦ se′ is an involution. If
(e, e′) < 1, then the plane spanned by e, e′ is negative definite, so se · se′ is of finite order, hence an
elliptic transformation. It is a rotation in angle arccos(e, e′) in the plane generated by e and e′. If
(e, e′) > 1, then it is a hyperbolic transformation.

Let e1, . . . , eN be N vectors with (ei, ei) = −1. Let Γ be the group of isometries of Hn generated
by the reflections g1 = se1 , . . . , gn = sen . If Γ is a discrete group, then the vectors ei must satisfy
the following properties:

• (ei, ei) > 1 or (ei, ei) = cos π
mij

, where mij ∈ Z ∪ {∞}.

Such a group is called a hyperbolic Coxeter group. The convex polyhedron

PΓ =
N⋂
i=1

H−ei , (5.1)

27
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is a fundamental domain of Γ in Hn. A convex polyhedron in Hn of this form is called a Coxeter
polyhedron.

The group Γ together with its set of generators gi is an abstract Coxeter group. This means that
the defining relations between the generators are

(gigj)
mij = 1,mii := 1.

The matrix C(Γ) = ((mij)) is called the Coxeter matrix of the Coxeter group Γ. All Coxeter
matrices (and hence Coxeter groups) of finite groups are classified. They are called of finite type (or
spherical type). The groups can be considered as reflection group acting in the spherical geometry
Sn of constant sectional curvature 1. The reflection groups fixing a point on the absolute can be
considered as reflection groups in the Euclidean space En. They are also classified.

The classification of Coxeter groups is given in terms of its Coxeter diagram. Its vertices corre-
spond to the generators or to the vectors ei. Two vertices ei, ej are joined by a thick edge (dotted)
if (ei, ei) = 0 (resp. (ei, ej) > 1). If (ei, ej) < 1 they are joined by an edge with mark mij ≥ 3 if
(mij) > 2. The mark is omitted if mij = 3.

One extends the previous notions to the case when the set of vectors e1, . . . , eN is an infinite
countable set.

For any discrete group Γ of isometries of Hn let Γr denotes the subgroup generated by all reflec-
tions contained in Γ. Then Γr is a normal subgroup of Γ and

Γ = Γr oA(P ),

where A(P ) is the intersection of γ with the group of symmetries of the Coxeter polyhedron of Γr.

Let M ⊂ R1,n be a lattice in R1,n. A reflection se preserves M if and only if, for all v ∈M ,

2
(v, e)

(e, e)
e ∈M.

Replacing e by some scalar multiple, we may assume that e ∈M . We also must have

2(e, v)/(e, e) ∈ Z, v ∈M.

Equivalently, this means that the vector e∗ = 2
(e,e)e ∈ M

∨ := Hom(M,Z), where we identify any
vector x in R1,n with the linear function y 7→ (x, y). In particular, any reflection se with e ∈ M
and (e, e) = −2 or (e, e) = −1, defines a reflection transformation of M . We call elements α ∈M
satisfying

2

(α, α)
α ∈M∨ (5.2)

roots. We will also assume a root is primitive vector, i.e. M/Zα has no torsion.

A Coxeter polytope P in Hn is called a lattice polytope if the reflection group ΓP preserves some
lattice M in R1,n.
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Proposition 5.1. A Coxeter polytope P with the Gram matrix G(P ) = (gij) is a lattice polytope if
and only if there exists some real numbers c1, . . . , cN such that

cicjgij ∈ Z. (5.3)

Proof. Suppose ΓP preserves a latticeM . By above, there exist some real numbers c1, . . . , cN such
that ciei ∈ M and, for all v ∈ M , 2(v,ciei)

(ciei,ciei)
∈ Z. Substituting v = cjej , we obtain that cigijcj

∈ Z.
Also, we have (ciei, ciei) = −c2

i ∈ Z. Hence, cicjgij ∈ Z. Conversely, assume that the conditions
are satisfied. Then the subgroup M of R1,n generated by vi = ciei is a ΓP -invariant quadratic
lattice with aij = (vi, vj) = cicj(ei, ej) ∈ Z.

We say that a vector (c1, . . . , cn+1) satisfying (5.3) is a multiplier vector of a lattice polytope. We
always assume that the multiplier is chosen with minimal possible product c1 · · · cn+1.

Let us denote by ι : M → M∨, the natural homomorphism obtained by the restriction of the
function (v, ) to M . The quotient group AM = M∨/ι(M) is a finite abelian group isomorphic to
the group defined by an integral matrix of the symmetric bilinear form (x, y) on M . It is called the
discriminant group of M . It is equipped with a quadratic map

qAM : AM → Q/Z, qAM (x+M) = x2 mod Z,

where we consider M∨ as a subgroup of M ⊗ R = R1,n.

Let Ref(M) denote the subgroup of the orthogonal group O(M) of M generated by reflections
lattice M in R1,n. It is called the reflection subgroup of M . We will be mostly dealing with even
lattices, i.e. lattice with even values of the quadratic form (x, x). For each lattice M one can
consider the largest even sublattice M ev. Since (x+ y, x+ y) = (x, x) + (y, y) + 2(x, y), we see
that M ev is generated by all vectors with even norm. It is clear that any isometry of M leaves M ev

invariant, so we have an inclusion of the groups

O(M) ⊂ O(M ev).

Let O(M ev) → O(AMev , qAMev ) be the natural homomorphism. Then an isometry of M ev lifts to
an isometry of M if and only it belongs to the kernel of this homomorphism. Thus, the index of
O(M ev) in O(M) is finite.

The relationship between the reflection groups of M and M ev is rather complicated. A root of
M ev is not necessary a root of M , a root of M with even norm is a root of M ev. However, if α is a
root of M with odd norm, then 2α is not necessary a root of M ev. The exception is when the norm
of α is equal to −1. Then 2α is a root of M ev of norm −4.

For any positive integer k, let Refk(M) be the subgroup of Ref(M) generated by reflections in
roots of norm −k. Obviously, each subgroup Refk(M) is a normal subgroup of Ref(M). We say
M is a reflective lattice (resp. k-reflective lattice) if the subgroup Ref(M) (resp. Refk(M)) is of
finite index in O(M).
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Theorem 5.2. Let M be a k-reflective lattice and P be the Coxeter polytope of the reflection group
Γ = Refk(M). Then it is spanned by a finite set of points [v1], . . . , [vN ] in Hn

. The faces He

correspond to normalized roots of norm−k. Each parabolic subdiagram of the Coxeter diagram is a
connected component of a parabolic subdiagram with number of vertices equal to n+1. Conversely,
each such diagram is the Coxeter diagram of of the Coxeter group Refk(M) of finite index in O(M).

Remark 5.3. The condition that Γ is of finite index in O(M) is equivalent to that Hn/Γ is of finite
volume (in the group theory this is expressed by saying that Γ is a lattice in the Lie group O(1, n)′).
This is equivalent to that the fundamental polyhedron of Γ is bounded, i.e. it spanned by a finite
set of vertices lying in the closure of Hn. If none of these points lie on the absolute, the orbit space
Hn/Γ is compact (this is expressed by saying that Γ is cocompact or a uniform lattice in O(1, n)′.
Hyperbolic Coxeter groups which are simplices in R1,n (i.e. generated by n+ 1 vertices) are called
quasi-Lanner groups (Lanner groups if they are cocompact). All such diagrams, and hence groups
are classified. Of course, not all of them are realized in reflective lattices.

Example 5.4. Let I1,n denote the odd (i.e. not even) unimodular quadratic lattice of signature
(1, n). BY Milnor’s Theorem, it is isomorphic to the sublattice of R1,n of vectors with integer
coordinates. The Table 5.1 lists the Coxeter diagrams of reflection groups of odd unimodular lattice
I1,n = Z1,n ⊂ R1,n for n ≤ 17.

The lattices I1,18 and I1,19 are also reflective. They contains 37 (resp. 50) vertices. Here all roots
are of norm −2 except those which are joined by a thick edge. They are of norm −1. It follows
from the previous discussion that the even sublattice of roots in a lattice M and its even sublattice
M ev that M ev is reflective if M is reflective and all its roots have even norm or of norm −1.

Example 5.5. Let 〈m〉 denote a lattice of rank 1 generated by an element with the norm indicated
inside the bracket. For example, the unimodular odd lattice I1,n considered in the previous example
is isomorphic to the orthogonal sum of the lattice 〈1〉 and n copies of the lattice 〈−1〉. Consider the
free abelian group H generated by h1, . . . , hp−1, e1, . . . , q + r. Let H∨ = Hom(H,Z) be the dual
group and h1, . . . , hp−1,−e1, . . . ,−eq+r be the dual basis. Let

α0 = h1 − e1 − · · · − eq, α1 = h1 − h2, αp−2 = hp−2 − hp−1,

αp−1 = e1 − e2, αq+r−1 = eq+r−1 − eq+r
be vectors from H . Let

α0 = (q − 2)h1 + (q − 1)h2 + · · ·+ (q − 1)hp−1 + e1 + · · ·+ eq,

α1 = −h1 + h2, . . . , αp−2 = −hp−1 + hp, αp−1 = −e1 + e1, . . . , αq+r−1 = −eq+r−1 + eq+r.

Let EP,q,r denote the free abelian group generated byα0, αq+r−1 equipped with a symmetric bilinear
form defined on the basis by

(αi, αj) = αi(αj).

The following graph of type Tp,q,r is the incidence graph of the matrix Iq+r + ((αi, αj)). In other
words, the diagram means that each αi has the norm equal to −2, (αi, αj) = 1 if the corresponding
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vertices are joined by an edge, and (αi, αj) = 0 otherwise. The diagram is the Coxeter diagram of
a reflection group (denoted by Wp,q,r) in the inner product space EP,q,r ⊗R ∼= Rq+r. The signature
of the quadratic form is equal to

sign(EP,q,r) =

{
(0, q + r) 1

p + 1
q + 1

r > 1,

(1, q + r − 1) 1
p + 1

q + 1
r < 1

If 1
p + 1

q + 1
r = 1, the quadratic form has one-dimensional radical, the quadratic form in the

quotient space by this radical is negative definite. The discriminant group of the lattices EP,q,r can
be computed. Its order is equal to pqr − pq − pr − qr.

• • • • • • •

•

•

•

. . .. . .

...

α0

αp−2

αp−1 αp+q−1 αp+q+r−3

Figure 5.1: Tpqr graph

We assume that
1

p
+

1

q
+

1

r
< 1.

Other cases lead to the reflection groups in the spherical spaces or in the Euclidean space. We as-
sume that p ≤ q ≤ r. The finite reflection groups correspond to the cases p = 1, q + r = n, or
(p, q, r) = (2, 2, n), n ≥ 2, or (p, q, r) = (2, 3, 3), (2, 3, 4), (2, 3, 5). They lattices in these cases
are called the root lattices and denoted by An,Dn,E6,E7,E8, respectively. The cases 1

p + 1
q + 1

r = 1

occur if and only if (p, q, r) = (3, 3, 3), (2, 4, 4), (2, 3, 6). The lattices are denoted by Ẽ6, Ẽ7, Ẽ8, re-
spectively. They correspond to affine root systems of types E6, E7, E8. The corresponding Coxeter
groups fit in the exact sequence

0→ Zr →W (Ẽp,q,r)→W (EP,q,r)→ 1.

So the groups, when realized as subgroups of Iso(Hn) are elementary groups.

It is clear that Ref(EP,q,r) = Ref2(EP,q,r). The following triples (p, q, r) correspond to reflective
lattices of hyperbolic signature:

(2, 3, n), 7 ≤ n ≤ 10, (2, 4, 5), (2, 4, 6), (3, 3, 4), (3, 3, 5), (3, 3, 6).

A set of roots in a lattice M is called a crystallographic root basis if the reflection group gener-
ated by the reflections in these roots is of finite index in O(M). The set of vectors α0, . . . , αq+r
corresponding to the vertices of the graph Tp,q,r is crystallographic only in the three cases

(p, q, r) = (2, 3, 7), (2, 4, 5), (3, 3, 4).
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We will denote the lattice E2,3,N−3 by EN . The lattices E8 and E10 are distinguished from other
lattices EP,q,r by the property that it is the only unimodular lattice, that its discriminant group is
trivial.

Note that the three lattices from above contain other crystallographic bases. For example, the
following Coxeter diagrams correspond to crystallographic bases in E10 of cardinality k ≤ 12.

• • • • • • • • •
•

• • • • • • • • •
••

• • • • • • • • • •
•

•

•

•

•

•

•

•

•

• •••

Figure 5.2: Crystallographic root basis in E10 of cardinality ≤ 12
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Table 5.1: Reflection groups of lattices I1,n
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Lecture 6

Reflection groups in algebraic geometry

We start with an example in which we realize the universal Coxeter group UC(N). Recall that a
Coxeter group is given by its set of generators s1, . . . , sN and relations (sisj)

mij = 1. It is the
quotient group of the free product UC(N) of N copies of the cyclic group Z/2Z.

First we have to remind the reader about the blow-up construction in algebraic geometry. In the
simpelst case, the constructionn is a sort of surgery, it replaces a closed smooth subvariety Z of
an smooth algebraic variety X with the projectivization E of its normal bundle. The result is a
smooth algebraic variety BlZ(X) that comes with the natural regular map π : BlZ(X)→ X which
is an isomorphism over X \ Z and its fibers over points z ∈ Z are projective spaces of dimension
equal to codimz(Z,X). The map π is called the blowing-down map (or blowing-up map). The
subvariety E is a hypersurface in BlZ(X). It is called the exceptional divisor. For example, the
rational projection map pL : Pn 99K Pn−k−1 from a k-plane L can be extended to a regular map
BlL(Pn)→ Pn−k−1 such that the diagram

BlL(Pn)
p̃L

$$
π

��
Pn pL // Pn−k

In this case p̃L is a projective bundle, its fibers are projective spaces of dimension k + 1 such that
each fiber of pL : Pn \ L → Pn−k−1 is equal to the complements of a hyperplane in it. Each
such hyperplane is mapped isomorphically to L under the map π. In general, the blow-up of a
nonsingular variety along a nonsingular subvariety is a local analog of this example. One choose
local coordinates equations z1 = . . . = zr of Z in some open affine neighborhood U of X and
considers the subvariety of U×Pr−1 defined by the equations tizj− tjzi = 0, i 6= j. The projection
(z, t) 7→ z has fibers isomorphic to Pr−1, if zi 6= 0 in U , then we can express ti = zj/zi for all j.
This shows that the projection is an isomorphism outside Z. This construction cam be globalized
by gluing together these local constructions.

35
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One can extend this construction to not necessarily nonsingular algebraic varieties. If π : BlZ(X)→
X is the blow-up of Z, and Y is a closed subvariety of X not contained in Z. We consider
V = π−1(Y \ (Y ∩ Z)) ⊂ BlZ(X) − E ∼= X \ Z, and then take the closure of V in the Zariski
topology. We call this closure the proper inverse transform of Y under the blow-up BlZ(X) → X
and denote it by π−1(Y ), it should not be confused with the inverse-image of Y under π. The re-
striction of the map π is a regular map π−1(Y )→ Y . It is an isomorphism over Y \(Y ∩Z) and the
pre-image of Y ∩ Z is a closed subvariety of E. If we are lucky, repeating this construction we ob-
tain a regular map Ỹ → Y which is a resolution of singularities. This means that Ỹ is nonsingular
and the map is an isomorphism over the open locus Y sm of nonsingular points.

In algebraic geometry, this construction is a special case of the blowing-up construction. We
through away a closed smooth subvariety Z of an algebraic variety X , and then replace it with the
projectivization E of the normal bundle. The union

BlZ(X) := (X \ Z) ∪ E

has a structure of a nonsingular algebraic variety. It is called the blow-up of X with center at Z,
or just the blow-up of Z in X . The subvariety E of BlZ(X) is called the exceptional divisor. The
blow-up BlZ(X) comes with a canonical regular map

π : BlZ(X)→ X,

whose restriction to BlZ(X) \ E → X \ Z is an isomorphism, and the pre-image of z ∈ Z is
the projective space of dimension codim(X,Z)z . For example if Z is a point, then the fiber is
PdimxX−1. We also say that the morphism π is the blowing-down of E to Z.

Example 6.1. Let Y be a quadric cone Q in P3. This means that Y is defined by a quadratic
equation q(t0, t1, t2, t3, t4) = 0, where q is a quadratic form with one-dimensional radical. After
changing the coordinates, we may assume that

Q : t0t1 − t22 = 0.

We already know that the Segre-Hirzebruch surface F2 admits a birational morphism onto Y that
blows down the exceptional section S0 to the singular point of Y . We can see it in another way as
follows. Consider the projection map Blx0(P3)→ P2 from the singular point x0 = [0, 0, 0, 1] of Q.
The points of the exceptional divisor E ∼= P2 are viewed as teh directions of lines passing through
the point x0. The lines that lie on Q, i.e. the lines with parameter equations s[a0, a1, a2, a3] +
t[0, 0, 0, 1], where a0a1 = a2

2, define the subvariety of E isomorphic to a nonsingular conic. The
proper inverse transform Q̃ = π−1(Q) → Q is a resolution of singularities. It replaces x0 with a
conic. The restriction of the projection Blx0(P3) → P2 to Q̃ is isomorphic to the P1-bundle over a
conic in P2.

Now, we are in business. Consider a quartic surfaceX ′ in P3. By definition, it is given by equation

X ′ : F4(t0, t1, t2, t3) = 0 (6.1)
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where F4 is a homogeneous polynomial of degree 4. Assume that X ′ has an ordinary double
point x0. This means that, if we write X ′ in affine coordinates near the point x0 as the surface
f(x, y, z) = 0, then the Taylor expansion of f at x0 starts with a non-degenerate quadratic form
f2(x, y, z). The fibers of the map P3 \ {x0} → P2 are isomorphic to P1 with one point, called
the infinity point, deleted. They correspond to directions at the point x0. Adding these points, we
obtain a P1-bundle P̃3 → P2 over P2. The set of added points form a section of the projective
bundle at infinity.After all of this background material let us turn back to a quartic surface X in P3.
We assume that X has k ordinary double singular points x1, . . . , xk (classically called nodes). The
maximal possible number of them is known to be equal to 16. Let pi : X → P2 be the proejction
from the node xi, the restriction of the projection pxi : P3 → P2 to X . For any point x 6= xi, by
Bezoute’s Theorem, the line x0, xi that joins xo with xi intersects the surface at one more point x′

(maybe equal to x or x0). We would like to extend it to an automorphism of the whole X . Note that
our map x 7→ x′ is not defined at x0, and also x′ could be equal to x0, so we do not have even an
automorphism of X \ {x0}. Without loss of generality, we may assume that the singular point has
the coordinates [1, 0, 0, 0], so that we can write the equation of X in the form

t20Q(t1, t2, t3) + 2t0Φ3(t1, t2, t3) + Phi4(t1, t2, t3) = 0. (6.2)

The line passing through the point x0 has a parameter equation [s, ta1, ta2, ta3]. Plugging this in
the equation and canceling by t2, we obtain

s2Q(a1, a2, a3) + 2stΦ3(a1, a2, a3) + t2Φ4(a1, a2, a3) = 0. (6.3)

This shows that it intersects the surface at two points corresponding to parameters [s, t]. So, we
choose one point corresponding to [s1, t1], the second solution [s2, t2] gives us the point x′. The line
intersects X at x0 with multiplicity 3 if [1, 0] is a solution of (6.3). This happens if Q(a1, a2, a3) =
0.

We view the point [a1, a2, a3] as the slope of the space line passing through x0. So, the slopes
corresponding to the lines intersecting X only at one point with multiplicity 1 besides x0 is a conic
Q(z1, z2, z3) = 0. Or better, we may consider the projection of X to the plane with equation
t0 = 0 from the point x0. Then the line corresponds to a point on the plane. So, the lines passing
through x0 with multiplicity 3 correspond to the points on the conic Q(t0, t1, t2) = 0. This is
the same conic that appears in the resolution of singularity x0 defined by the projection from the
point x0. So, the direction x = [a1, a2, a3] should be considered as a point on the surface X̃ .
We extend our map x 7→ x′ by assigning to the point x the second solution of (6.3) defined by
[s2, t2] = [−Φ4(a1, a2, a3),Φ3(a1, a2, a3)]. The only case where this does not make sense is when
Q(a1, a2, a3) = Φ4(a1, a2, a3) = Φ3(a1, a2, a3) = 0. This happens if and only if the line is
contained in the surface. One can show that the map T : x 7→ x′ still extends to X̃ and fixes any
point on this line including the point (a1, a2, a3) lying on the exceptional curve of X̃ → X . Other
fixed points of the automorphism T : X̃ → X̃ lie on the line with the slope [a1, a2, a3] satisfying
the discriminant equation of degree 6

D(t1, t2, t3) = Φ3(t1, t2, t3)2 −Q(t1, t2, t3)Φ4(t1, t2, t3) = 0.
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These line passes through x0 and tangent toX at some other point. Note that the conicQ(t1, t2, t3) =
0 is tangent to the plane curve D = 0 at the points Φ3 = Q = 0. In general case, we have 6 points
of the intersection.

Let us see how the automorphism T of X̃ defined by the projection from a node x0 acts on the
group N1(X̃). Let R be the exceptional curve over x0, and H̃ be the pre-image of a a plane section
H of X on X̃ . If H passes through x0, then it is projected to a line in the plane x0 = 0. The
images T (x) of all its points except x0 stay in the plane. The pre-image H̃ of this plane on X̃ is the
union of the proper transform H̄ of H and the exceptional curve R.This shows that the class h− r
is invariant with respect to T ∗ Let h = [H̃], obviously, it does not depend on H , and r = [R] be the
cohomology class of R. Let l be the class of a line in P2 : t0 = 0. The cohomology class of the
pre-image of l under the projection is the class [h− r]. We know that T (R) is the conic in the plane
t0 = 0. Thus T ∗(r)+r = 2(h−r), hence T ∗(r) = 2h−3r. We also know that T ∗(h−r) = h−r.
This gives T ∗(h)− h− r + T ∗(r) = h− r + (2h− 3r) = 3h− 4r. We have T ∗(h− r) = h− r.
Thus T ∗ leaves the span Zh+ Zr invariant and acts on this sublattice as a matrix

A =

(
4 3
−3 −2

)
.

Suppose that X has other nodes x1, . . . , xn−1. Let Ri be the classes of the exceptional curves
obtained by projections from each point xi. Obviously, we can find a plane H that misses all
singular points. Thus h · [Ri] = 0. Obviously Ri ∩R = ∅. Thus [Ri] is orthogonal to h and r.

Consider the reflection sα with respect to the class α = h−2r of norm−4. Then, we immediately
check that sα acts on h, r via the matrixA. It also acts as the identity on the orthogonal complement
of h− 2r, hence it fixes the classes [Ri], i 6= 0.

Suppose that N1(X̃) ⊗ Q is generated by the class of a plane section h and the classes ri of the
exceptional curvesRi. In other words, the rank ofN1(X) is equal to 1+N , whereN is the number
of nodes on X . Then, each node defines an automorphism Ti of order 2 of X̃ that acts on N1(X) as
the reflection sαi , where αi = h−2ri of norm−4. We have (αi, αj) = (h−2ri, h−2rj) = 4. After
normalizing the vectors to get the vectors ei = 1

2αi of norm −1, the Gram matrix of the vectors
e1, . . . , eN becomes the circulant matrix circ(−1, 1, . . . , 1). Its Coxeter diagram is the complete
graph with n vertices and thick edges. Since all mij = ∞, we obtain that there are no relations
except the relation s2

ei = 1. We get the universal Coxeter group UC(n) acting in the hyperbolic
space Hn associated to N1(X)R.

Example 6.2. There is another example, where the group UC(3) is realized as a discrete group of
motions in H3 associated with automorphisms of a K3 surface. We consider nonsingular surface
X given in the product P1 × P1 × P1 by an equation F (u0, u1; v0, v1;w0, w1) which is multi-
homogeneous of degree 2 in coordinates on each copy of P1. It is known that the canonical class of
X is equal to 0, and the first Betti number of X is equal to 0, so X must be a K3 surface. Consider
the projection pij to the product of the ith and jth factors. Assume for simplicity (i, j) = (1, 2). If
we write

F = w2
0A1 + 2w0w1A2 + w2

1A3, (6.4)



39

where Ai are bihomogeneous forms of degree (2, 2) in (u0, u1, v0, v1). The fiber over a point (x, y)
consists of two points taken with multiplicity. So, the cover pij : X → P1 × P1 is of degree 2
ramified over the set of points in P1 × P1 satisfying the equations A1A3 − A2

2 = 0. Let gij be
the deck transformation of this cover. Let us see how it acts on N1(X). There are obvious classes
hi in N1(X) represented by the fibers of the projections pi : X → P1, i = 1, 2, 3. The fiber is a
hypersurface in P1 × P1 given by a bihomogeneous equation of degrees (2, 2). We have

((hi, hj)) =

0 2 2
2 0 2
2 2 0

 .

Let us consider the span M of h1, h2, h3 in N1(X). It follows from formula (6.4) that hi, hj is
invariant with respect to g∗ij , and hk + g∗ij(hk) = 2hi + 2hj . Thus, we see that each g∗ij , say g∗12, is
defined in the basis (h1, h2, h3) by the matrix1 0 2

0 1 2
0 0 −1

 .

It is a reflection with respect to the vector α = h1 + h2 − h3 of norm −4. The group generated by
g∗12, g

∗
13, g

∗
23 is isomorphic to the universal Coxeter group UC(3).

Example 6.3. Similarly to the previous example, we can realize the group UC(4) as acting on a K3
surface given as a smooth complete intersection of two divisors of types (1, 1, 1, 1). If X is general
enough, thenN1(X) is equal to the restriction of Pic((P1)4) toX . The projection pij to the product
of any two factors is a double cover (its fibers are equal to the intersection of two divisors of type
(1, 1) on P1 × P1). We realize UC(4) as the group generated by the deck transformations of these
covers.

The fundamental polyhedron for UC(3) is the ideal triangle, its orbit under the reflection group
gives a tesselation of the hyperbolic plan.

The importance of the reflection groups in algebraic geometry is explained by the following
fact that follows from the Global Torelli Theorem for K3 surfaces due to I.R. Shafarevich and I.I.
Piyatetski-Shapiro.

Theorem 6.4. Assume k = C. Let X be a K3 surface or an abelian surface. Let σ : H2(X,Z) →
H2(X,Z) be an isometry of the quadratic latticeH2(X,Z). Suppose that, σ∗(H2,0(X)) = H2,0(X),
and, for any effective divisor class [C] on X , σ([C]) is an effective divisor class. Then there exists
an automorphism g of X such that g∗ = σ.

The Riemann-Roch Theorem applied to K3 surfaces implies that for any divisor class D with
D2 ≥ −2, we have either D or −D is effective. We know that the set PX = {x ∈ N1(X)R : x2 >
0} consists of two connected components. Choose one component P+

X that contains the divisor
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Figure 6.1: Ideal triangle

class h of a hyperplane section for some projective embedding of X . Then all effective divisor
classes are contained in this component. We know that the group of isometries N1(X)R preserving
P+
X coincides with the group of motions of the hyperbolic space P(P+

X ) ∼= Hρ(X)−1 associated with
N1(X). Let WX denote the group of isometries of P+

X generated by reflections sr, where r is the
class of divisor class R with R2 = −2. One can show that this group coincides with the group
generated by reflections sr, where r is the class of a smooth rational curve R on X . Note that in the
case of an abelian surface no such curve exists onX (since a holomorphic map of P1 to a torus C2/λ
lifts to a holomorphic map from P1 to C2, and hence must be constant). We call such classes nodal
roots. Let CX be the fundamental domain of WX in P+

X . It is the cone over the fundamental domain
of WX in P(P+

X ). Writing any effective divisor as a non-negative linear combination of irreducible
curves, we see that [D] ∈ CX if and only if D is nef, i.e. intersects any curve non-negatively.

Let O(N1(X))+ be the subgroup of O(N1(X) that preserves CX . It is easy to see that any isom-
etry of O(N1(X)) that acts identically on the discriminant group of N1(X) extends to an isometry
of H2(X,Z) that acts on the orthogonal complement of N1(X) identically. Thus O(N1(X))+

contains a subgroup of finite index whose elements are extended to such isometries of H2(X,Z).
Obviously they preserveH2,0(X) (since it is contained in the orthogonal complement ofH1,1(X)).
Since any element α of O(N1(X))+ preserves P+

X , for any effective divisor class D with D2 ≥ 0,
we have α(D) is effective. For any root r, α(r) or −α(r) is effective. If the second possibility
realizes, then 0 > α(r) · h = r · α−1(h). Since h ∈ CX , the divisor class α−1(h) ∈ CX , hence
it intersects any effective divisor non-negatively. This contradiction shows that α(r) is effective.
Aplying the Global Torelli Theorem, we obtain the following corollary of the Global Torelli Theo-
rem.

Corollary 6.5. The subgroup of O(N (X)) generated by WX and Aut(X)∗ is of finite index.

Note that WX ∩ Aut(X)∗ = {1} and WX is a normal subgroup of the group generated by WX

and Aut(X)∗. Thus the latter group is isomorphic to the semi-direct product WX o Aut(X)∗.

Corollary 6.6. The group of automorphisms of a K3 surface is finite if and only if the latticeN1(X)
is 2-reflective. The group of connected components of the automorphism group of an abelian surface
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is finite if and only if O(N1(X)) is finite.

Example 6.7. All 2-reflective quadratic lattices M of signature (1, n) with n 6= 3 have been classi-
fied by V. Nikulin and by E. Vinberg in the case n = 3 (see [38], [39], [51]). They are all realized as
the Picard lattices N1(X) for some K3 surface. The largest possible rank of such a lattice is equal
to 19. The Coxeter diagram of the 2-reflection group Ref2(M) in this case is the following one.

• • • • • • • • • • • • •
•

•
• •

•

••
•
•

Figure 6.2: 2-reflective lattice of rank 19

We have an isomorphism of lattices

M ∼= U ⊥ E8 ⊥ E8 ⊥ A1.

The K3 surfaces whose Picard group contains the lattice M are described in [16].

There is an analog of Corollaries 6.5 and 6.6 for Enriques surfaces. In this case not each vector
in N1(X) with norm −2 is effective. Note that N1(X) ∼= E10 and Ref2(O(E10)) is a subgroup
of index 2 of O(E10). Let WX denote the subgroup of O(N1(X)) generated by reflections in the
classes r of smooth rational curves on X . A general Enriques surface does not contain smooth
rational curves, so this group is trivial.

Corollary 6.8. The subgroup of O(N (X)) generated by WX and Aut(X)∗ is of finite index.

Note that WX ∩ Aut(X)∗ = {1} and WX is a normal subgroup of the group generated by WX

and Aut(X)∗. Thus the latter group is isomorphic to the semi-direct product WX o Aut(X)∗.

Corollary 6.9. The group of automorphisms of an Enriques surface is finite if and only if the lattice
N1(X) admits a crystallographic root basis formed by the classes of rational smooth curves.

One can show that all the previous assertions are true in the case of an arbitrary algebraically
closed field k. Over C, there is a classification due to S. Kondo and V. Nikulin of all possible
Enriques surfaces with finite automorphism groups. They are divided into 7 types according to
a possible group of automorphisms and a possible crystallographic root basis formed by smooth
rational curves. In Figure 5.2 we gave examples of crystallographic root bases in the lattice E10 of
cardiianlity ≤ 12. The first three examples are realized only if k is of characteristic 2. The last
example is an example of Type 1 on Kondo-Nilulin’s classification. It was first constructed in [15].
The group of automorphisms of the corresponding Enriques surfaces is isomorphic to the dihedral
group D8 of order 8.
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Figure 6.3: Crystallographic root basis of cardinality 20

The following example is of type VII. It was first discovered by G. Fano. The group of automor-
phisms of the corresponding Enriques surfaces is isomorphic to the permutation group S5.

Mysteriously, all crystallographic root bases in types II-VII are of cardinality 20.

Example 6.10. Let A be an abelian surface. The group Aut(A)0 is isomorphic to A, where the
latter acts on itself by translations. The group of connected components Autc(A) is isomorphic to
the group automorphisms of A, the invertible elements in the ring End(A) of endomorphisms of A.
An abelian surface is called simple if does not map surjectively to the product of elliptic curves. Let
End(A)Q = End(A) ⊗Z R. It is an algebra over Q. The classification of possible structures of the
ring of automorphisms of abelian varieties (complex tori of arbitrary dimension embeddable in a
projective space) shows that there are the following possibilities for the structure of End(A)Q when
A is a simple abelian surface.

(i) End(A)Q ∼= Q and ρ(A) = 1;

(ii) End(A)Q is a totally real quadratic extension K of Q and ρ(A) = 2;

(iii) End(A)Q is a totally indefinite quaternion algebra over K = Q and ρ = 3;

(iv) End(A)Q is a totally imaginary quadratic extension K of a real quadratic field K0 and ρ = 2.
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As we see that End(A)Q is a central simple algebra, so that End(A) is an order in it. It follows from
Dirichlet’s Theorem on units in an order of algebraic integers that Autc(A) could be an infinite
group only in the case (iii) and (iv). In the former case the group of units End(A)∗ = Autc(A) is a
discrete subgroup of PSL2(R). It is a cocompact Fuchsian group of the first kind . It is isomorphic
to a discrete cocompact subgroup of H2 with the limit set equal to the whole absolute. In the last
case (iv), one says that an abelian surface has complex multiplications. The group of units is an
abelian group of rank 1. The quadratic from of the lattice N1(A) is an indefinite lattice of rank 2
not representing zero. Its orthogonal group is infinite and contains Aut(A)∗ as its subgroup of finite
index.

Assume now that A is not simple. In this case End(A)Q ∼= EndQ(E1 × E2), where E1, E2 are
elliptic curves. If E1 6∼= E2, then ρ(A) = 2 and O(N1(A)) is a finite group. If E1

∼= E2, then
ρ(A) ≥ 3. It is equal to 4 if and only if E has complex multiplication, i.e. End(E) is an order in
an imaginary quadratic field K/Q. It is easy to see that Autc(A) is a subgroup of Autc(E × E).
Suppose that End(E) = Z and let g ∈ Autc(E × E). Then the image of the curve E × {0} in
E × E projects surjectively to each factor and defines a pair (m,n) of endomorphisms E → E.
It follows that g can be represented by an invertible integer matrix

(
a b
c d

)
. Conversely each matrix

defines an automorphism of E × E. Thus we obtain

Autc(E × E) ∼= GL(2,Z).

Note that the automorphism (−1,−1) acts identically on the lattice N1(X) of rank 3, so that

Γ := Aut(E × E)∗ ∩ Iso(H2)+ ∼= PSL2(Z).

Now we assume that E has a complex multiplication with an imaginary quadratic fields K =
Q(
√
−m), where m is a positive square free integer. Let o = End(E), it is an order in K. The

elliptic curve is isomorphic to the complex torus C/o, where o = Zf1 + Zf2, where (f1, f2) is a
basis in o. Arguing as before, we obtain that

Aut(E × E) ∼= GL(2, o),

Γ := Aut(E × E) ∩ Iso(H3)+ ∼= PSL2(o).

Suppose o = oK is the total order, i.e. coincides with the ring of integers of K. It is known
that one can choose a basis in oK of the form (1, ω), where ω =

√
−m if −m 6≡ 1 mod 4 and

ω = 1
2(1 +

√
−m) otherwise.

One can show that we have an isomorphism of lattices

N1(X) ∼= U ⊕ 〈−2〉 ⊕ 〈−m〉, if −m 6≡ 1 mod 4.

N1(X) ∼= U ⊕
(−2 1

1 −m
)
, if −m ≡ 1 mod 4.

The group Γ is a Bianchi group Bi(m). As we noticed before, it is always a lattice in Iso(H3)+ ∼=
PSL2(C) but not cocompact. Let Bi(m)r be the maximal reflection subgroup of Bi(m). It is a
lattice in Iso(H3) if and only if m ≤ 19,m 6= 14, 17 [5]
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Lecture 7

Boyd-Maxwell Coxeter groups and
sphere packings

We know that one can identify the absolute ∂Hn with the n− 1-dimensional sphere Sn−1, and, via
the stereographic projection, with the extended Euclidean space Ên−1. Let He be a hyperplane in
Hn with the normal vector e of norm −1. Its closure in Hn intersects the boundary, let us see that it
cuts out a sphere in Ên−1 (maybe of infinite radius).

For convenience, and future applications, let us change the standard coordinates and take the new
coordinates in R1,n such that the absolute has the equation

q = 2t0tn − t21 − · · · − t2n−1 = 0. (7.1)

Let
φ : Pn−1(R) 99K Pn(R) (7.2)

be the map defined by the formula

[x0, . . . , xn−1] 7→ [2x2
0,−2x0x1, . . . ,−2x0xn−1,

n−1∑
i=1

x2
i ].

It is immediately checked that the map is everywhere defined in Pn−1(R) (but not in Pn−1(C)). The
image of the hyperplane x0 = 0 is the point p = [0, 0, . . . , 0, 1] ∈ Q which we may call the north
pole. The complement Pn−1(R) \ {x0 = 0} can be identified with the affine space En−1 = Rn−1

via dehomogenization of the coordinates yi = xi/x0, i = 1, . . . , n−1. Its image is equal toQ\{p},
and the inverse map Q \ {p} → En−1 is the projection map from p to the plane x0 = 0. So, this
gives an explicit identification of the absolute with Ên−1 = En−1 ∪ {p}.

Let e = (a0, . . . , an) ∈ R1,n with (e, e) = −1. The pre-image of a hyperplane

He = {x ∈ R1,n : (x, e) = 0, (x, x) ≥ 0}/R∗ ⊂ Pn(R)

45
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under the map φ is a quadric in Pn−1(R) defined by the equation

a0

n−1∑
i=1

x2
i + 2anx

2
0 − 2x0

n−1∑
i=1

aixi = 0.

If a0 6= 0, this quadric does not intersect the hyperplane x0 = 0. We can rewrite this equation in the
form

a2
0

n−1∑
i=1

(
xi
x0
− ai
a0

)2 = −2a0an +
n−1∑
i=1

a2
i = −(e, e) = 1. (7.3)

So, we can identify its real points with a n − 1-dimensional sphere S(e) in the Euclidean space
En−1 = Pn−1(R) \ {x0 = 0} of radius square r2 = 1/a2

0 and the center c = [a1
a0
, . . . , an−1

a0
]. It is

natural to call |a0| the curvature of the sphere.

If a0 = 0, the quadric is equal to the union of the hyperplane at infinity and the hyperplane

S(e) :=
n−1∑
i=1

aixi + an+1x0 = 0.

We view this hyperplane as a sphere with curvature k = 0 (or radius r :=∞).

One introduces the oriented curvature equal to a0. We agree that the positive curvature corre-
sponds to the interior of the sphere S(e), i.e. an open ball B(e) of radius r. The negative curvature
corresponds to the open exterior of the sphere, we also call it the ball corresponding to the oriented
sphere S and continue to denote it B(e). It can be considered as a ball in the extended Euclidean
space Ên−1.

So, we see that the mirror hyperplanes of reflections se intersect the absolute along a sphere, if we
identify the absolute with the extended Euclidean space Ên−1.

A sphere packing in the extended Euclideal space Êk is an infinite set P = (Si)i∈I of oriented k-
spheres such that any two of them are either disjoint or touch each other (i.e. intersect at one point).
We say that a sphere packing is strict if, additionally, no two open balls Bi intersect. An example of
a non-strict sphere packing is an infinite set of nested spheres. A sphere-packing is called maximal
if any sphere overlaps with one of the spheres from P.

We assume also that the set P is locally finite in the sense that, for any t > 0, there exists only
finitely many spheres of curvature at most t in any fixed bounded region of the space.

The condition that two spheres Si and Sj are disjoint or touch each other is easily expressed in
terms of linear algebra. We have the following.

Lemma 7.1. Let S(e) and S(e′) be two n-dimensional spheres corresponding to hyperplanes He

and He′ . Then their interiors do not intersect if and only if

(e, e′) ≥ 1.

The equality takes place if and only if the spheres are tangent to each other, and hence intersect at
one real point.
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Proof. Suppose (e, e′) ≥ 1, then the plane spanned by e, e′ is not negative definite, hence its orthog-
onal complement does not contain vectors with positive norm. This implies that the hyperplanes He

and He′ either diverge or, if (e, e′) = 0, intersect at one point in the absolute corresponding to the
unique isotropic line in the orthogonal complement of the plane. The converse is proven along the
same lines.

Let P be a simplicial Coxeter polytope in Hn defined by a Coxeter polytope!simplicial in R1,n.
This means that it is bounded by n+ 1 hyperplanes Hei , where (e1, . . . , en+1) is a basis in R1,n.

Let ωj be a vector in R1,n uniquely determined by the condition

(ωj , ei) = δij . (7.4)

We have

ωj =

n+1∑
i=1

gijei, (7.5)

where
G(P )−1 = (gij) = ((ωi, ωj)).

The vectors ω1, . . . , ωn+1 are called fundamental weights associated to simple roots (e1, . . . , en+1).
We call ωi real if (ωi, ωi) = gii > 0. In this case we can normalize it to set

ω̄i := ωi/
√
gii.

Let J = {j1 < · · · < jr} be the subset of {1, . . . , n + 1} such that ω̄j is real if and only if j ∈ J .
Consider the union

P =

r⋃
k=1

OΓP (S(ω̄jk)). (7.6)

A Boyd-Maxwell sphere packing is a sphere packing of the form P(P ), where P is a simplicial
Coxeter polytope. By definition, it is clustered with clusters

(γ(S(ω̄j1)), . . . , γ(S(ω̄jr))) = (S(γ(ω̄j1)), . . . , S(γ(ω̄jr)).

We call the cluster (S(ωj1), . . . , S(ωjr)) the initial cluster. It is called non-degenerate if all ωi
are real. This is equivalent to that all principal maximal minors of the matrix G(P ) are negative.
It is clear that the spheres in the packing P(P ) correspond to elements of the ΓP -orbit of real
fundamental roots. We call them real weights.

Let ∆ij be the minors ofG(P ) obtained by deleting the ith row and j-th column. Let ∆ = |G(P )|.
Its sign is the same as the sign of the of the determinant of the matrix Jn+1 defining the quadratic
form (7.1). So, it is equal to (−1)n. Since

(ωi, ωj) = (−1)i+j∆ij/∆, (7.7)
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we obtain that ωi is real if and only if (−1)n−1∆ii < 0.

Following G. Maxwell [35], we say that the Coxeter diagram is of level l if, after deleting any l
of its vertices, we obtain a Coxeter diagram of Euclidean or of parabolic type describing a Coxeter
polyhedron in an Euclidean or a spherical geometry. They can be characterized by the property that
all mij 6= ∞ (except in the case n = 1) and the symmetric matrix (mij) is non-negative definite,
definite in the Euclidean case, and having a one-dimensional radical in the parabolic case. Coxeter
diagrams of level l = 1 correspond to Lanner and quasi-Lanner Coxeter groups. Coxeter diagrams
of level 2 have been classified by G. Maxwell (with three graphs omitted, see [11]). They have
N ≤ 11 vertices. For N ≥ 5 they are obtained from quasi-Lanner diagrams by adding one vertex.
We call Coxeter polytopes with Coxeter diagram of level 2 a Boyd-Maxweel polytope.

For example, a Coxeter polyhedron in H10 with Coxeter diagram of type T2,3,8 is obtained from
the diagram T2,3,7 by adding one vertex v is of level 2

It defines a sphere packing with only one real ωi corresponding to the vertex v.

The following theorem is proven, under a certain assumption, in loc.cit., Theorem 3.3. The as-
sumption had been later removed in [36], Theorem 6.1.

Theorem 7.2. Let P be a Coxeter polytope in Hn. Then P(P ) is a maximal sphere ΓP -packing
in Ên−1 if and only if P is a Boyd-Maxwell polytope. It is a non-strict sphere packing if and only
if there exists a pair of distinct vertices corresponding to real fundamental weights such that, after
deleting them, one obtains a Coxeter diagram of finite type.

If P is a Coxeter polytope of quasi-Lanner type, the group ΓP has a fundamental polyhedron of
finite volume. It follows that the index 2 subgroup of ΓP is a Kleinian group of the first kind ( [42],
Theorem 12.2.13). Thus any point on the absolute is its limit point. The stabilizer ΓP,i of each
S(ω̄i) is the reflection group of the Coxeter group defined by the Coxeter diagram of level 1, hence
the limit set of ΓP,i is equal to S(ω̄i). Thus the assumption (A1) is satisfied.

Let P(P ) be a non-degenerate Boyd-Maxwell sphere packing and let k = (k1, . . . , kn+1) be the
vector of the curvatures of the spheres

S(γ(ω1)), . . . , S(γ(ωn+1))

in its cluster. Let N be the diagonal matrix diag(
√
−g11, . . . ,

√
−gn+1). Denote by G̃(P ) the

matrix NG(P )N .

Theorem 7.3. Let G(P ) be the Gram matrix of P . Then

tk · G̃(P ) · k = 0. (7.8)

Proof. Obviously G̃(P ) = G̃(γ(P )). So, we may assume that the cluster S(γ(ω1), . . . , S(γ(ωn+1))
is equal to the initial cluster S(ω1), . . . , S(ωn+1).
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Let Jn+1 be the matrix of the symmetric bilinear form defined by the fundamental quadratic form
q from (7.1). It satisfies Jn+1 = J−1

n+1. Let X be the matrix whose jth column is the vector of
coordinates of the vector ω̄j . Recall from (7.3) that the first coordinate of each vector ω̄j is equal to
the curvature of the sphere S(ω̄j). By definition of the Gram matrix, we have

tX · Jn+1 ·X = ((ω̄i, ω̄j)) = N−1G(P )−1N−1,

hence
tX−1 ·N−1G(P )−1N−1 ·X−1 = Jn+1.

Taking the inverse, we obtain

X · G̃(P ) · tX = J−1
n+1 = Jn+1.

The first entry a11 of the matrix in the right-hand side is equal to zero. Hence

tk · G̃(P ) · k = 0,

The group ΓP generated by the reflections si := sei acts on the dual basis (ω1, . . . , ωn+1) by the
formula

si(ωj) = ωj − 2(ei, ωj)ei = ωj − 2δijei = ωj − 2δij

n+1∑
k=1

gkiωk, (7.9)

where δij is the Kronecker symbol. This gives explicitly the action of ΓP on the clusters of the
sphere packing and also on the set of their curvature vectors.

Note that, in general, the polytope defined by the hyperplanes Hω̄i is not a Coxeter polytope. If it
is, and also a Boyd-Maxwell polytope, then one may define the dual sphere packing.

Note that different Boyd-Maxwell polytopes may define the same sphere packings. Thus 186
possible Coxeter diagrams of level 2 with N ≥ 5 vertices define only 95 different sphere packings.

Theorem 7.4. Let P be a Boyd-Maxwell polytope. Then the limit set Λ(ΓP ) is equal to the closure
of the union of spheres from the packing.

Proof. It follows from Theorem of [36] that the closure of the union of spheres in the packing P(P )
is equal to the closure of the union of orbits of spheres corresponding to real fundamental weights.
Let Si be a sphere from the packing P(P ) from the orbit of a real fundamental weight and let Γi be
its stabilizer subgroup in ΓP . We view Si as the absolute in the codimension 1 hyperbolic subspace
Hn−1 of Hn. Since deleting the vertex corresponding to a real fundamental weight is a subdiagram
of quasi-Lanner type, the group Γi is of finite covolume in Hn−2, and its limit set if equal to the
absolute. Thus Si is equal to the closure of fixed points of hyperbolic and parabolic elements in Γi.
Suppose that x ∈ ∂Hn is a fixed point of a hyperbolic or a parabolic element γ from ΓP that does
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not belong to any sphere from the packing. Since the sphere packing is maximal, it belongs to the
interior of some sphere from the packing and leaves it invariant. But then γ must be of finite order
contradicting the assumption. This shows that the closure of the union of spheres is equal to the
closure of fixed points of hyperbolic and parabolic elements in ΓP , and hence coincides with the
limit set.

Example 7.5. The the most notorious and widely discussed beautiful example of a Boyd-Maxwell
sphere packing is the Apollonian cicle packing (see, for example, [25], [26], [27], [24], [44]).

Consider again the universal Coxeter group UC(n + 1) defined by the Coxeter polytope with the
Gram matrix of size n+ 1

G(P ) = circ(−1, 1, . . . , 1). (7.10)

Its Coxeter diagram is the complete graph with n+ 1 vertices and thick edges. It is of level 2 only
if n = 3. Thus it defines a maximal sphere packing in the plane Ê2. This is the Apollonian circle
packing.

It is easy to compute the inverse of G(P ) to obtain

G(P )−1 =
n− 2

2n− 2
circ(−1,

1

n− 2
, . . . ,

1

n− 2
). (7.11)

It is the Gram matrix of a Coxeter polytope P if and only if n = 3, 4. So, we may consider a
polytope P⊥ with G(P⊥) = 2n−2

n−2 G(P )−1 and define a sphere-packing in Ê3. If n > 4, we can
still use this matrix but the group ΓP⊥ is not a discrete anymore, so the sphere packing is not locally
finite anymore.

The group UC(n + 1) realized as the reflection group with the polytope with the Gram matrix
(7.10) is called in literature the Apollonian group. We call P the Apollonian polyhedron. It is
denoted by Apn. Note that when n = 3, the normalized fundamental weights of P define the same
Gram matrix as the simple roots of P but they different from the roots. The corresponding sphere
packings are orthogonal to each other as shown in the following picture. We consider the polytope

P⊥. Since gii are all equal, the matrix N in equation (7.8) is scalar, hence G̃(P⊥) = G(P⊥) and
we curvature vector satisfies the equation

n(k2
1 + · · ·+ k2

n+1)− (k1 + · · ·+ kn+1)2 = 0. (7.12)

It is known as Descartes’s equation or Soddy’s equation1

1From a “poem proof” of the theorem in the case n = 3 in “Kiss Precise” by Frederick Soddy published in Nature,
1930:

Four circles to the kissing come. / The smaller are the bender. / The bend is just the inverse of / The distance from
the center. / Though their intrigue left Euclid dumb / Theres now no need for rule of thumb. / Since zero bends a dead
straight line / And concave bends have minus sign, / The sum of the squares of all four bends / Is half the square of their
sum.
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Figure 7.1: Dual Apollonian circle clusters (from [35])

Let Hω̄1 , . . . ,Hω̄n+1 be the bounding hyperplanes for P⊥.Let S(e1), . . . , S(en+1) be the cluster
of the dual Apollonian sphere packing. The formula (7.9) specializes to give sei(ω̄j) = ω̄j , and

sei(ω̄i) = −ω̄i +
2

n− 1

∑
j 6=i

w̄j .

For example, se1 is represented in the basis (ω̄1, . . . , ω̄n+1) by the matrix

A1 =


−1 0 0 ... 0
2

n−1
1 0 ... 0

...
...

...
...

...
2

n−1
0 0 ... 1

 .

So, the Apollonian group is generated by n+ 1 matrices A1, . . . , An+1 of this sort.

Assume n > 2. Consider a solution (k1, . . . , kn+1) of the Descartes’ equation which we rewrite
in the form

n+1∑
i=1

k2
i −

2

n− 2

∑
1≤i≤j≤n+1

kikj = 0. (7.13)

Thus, kn+1 satisfies the quadratic equation

t2 − 2t

n− 2

n∑
i=1

ki −
2

n− 2

n+1∑
1≤i<k≤n

ki = 0.
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It expresses the well-know fact (the Apollonian Theorem) that, given n + 1 spheres touching each
other, there are two more spheres that touch them. Thus, starting from an Apollonian cluster
(S1, . . . , Sn+1), we get a new Apollonian cluster (S1, . . . , Sn+1, S

′
n+1) such that the curvatures

of Sn+1 and S′n+1 are solution of the above quadratic equation. The curvatures of S′n+1 is equal to

k′n+1 = −kn+1 +
2

n− 2

n∑
i=1

ki.

So the new cluster (S1, . . . , Sn+1, S
′
n+1) is the cluster obtained from the original one by applying

the transformation sen+1 .

Figure 7.2: Apollonina circle cluster with curvature vector (−10, 18, 23, 27)

If we start with a cluster as in the picture, then all circles will be inclosed in a unique circle of
largest radius, so our circle packing will look as in following Figure 7.3.

Figure 7.3: Apollonina circle packing

We have already considered the Apollonian group Ap2 = UC(3) in Example 6.2. One cam
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consider tha analog of the Apollonian packing in this case as the set of not overlapping intervals
on the unit circle with ends equal to the sides of the images of an ideal triangle under the reflection
group.

The Descartes equation becomes

k1k2 + k1k3 + k2k3 = 0. (7.14)

LetK ⊂ R be a totally real field of algebraic numbers of degree d = [K : Q] and oK be its ring of
integers. A free oK-submodule L of rank n+ 2 of Rn+1,1 is called a oK-lattice. Let (e1, . . . , en+1)
be a basis of L. Assume that the entries of its Gram matrix G = ((ei, ej)) = (gij) belong to oK
Let σi : K ↪→ R, i = 1, . . . , d− 1, be the set of non-identical embeddings of K into R. We assume
additionally that the matrices Gσi = (σi(gij)) are positive definite. Let

f =
∑

1≤i,j≤n+2

gijtitj

be the quadratic form defined by the matrix G and let O(f, oK) be the subgroup of GLn+1(oK)
of transformations that leave f invariant. The group O(f, oK) is a discrete subgroup of O(Rn+1,1)
with a fundamental polyhedron of finite volume, compact if f does not represent zero. By passing to
the projective orthogonal group, we will view such groups as Kleinian subgroups of Iso(Hn+1). A
subgroup of Iso(Hn+1) which is commensurable with a subgroup of the form PO(f, oK) is called
arithmetic. Two groups PO(f ′, o′K) and PO(f, oK) are commensurable if and only if K = K ′

and f is equivalent to λf ′ for some positive λ ∈ K. In particular, any subgroup of finite index
in PO(f, oK) is an arithmetic group. A Bianchi group Bi(m) which we considered before are
examples of arithmetic Kleinian groups.

We will be interested in the special case of an integral lattice where K = Q. A Kleinian group
Γ in Hn+1 is called integral if it is commensurable with a subgroup of PO(f,Z) for some integral
quadratic form f of signature (n + 1, 1). We will be dealing mostly with geometrically finite
Kleinian groups with infinite covolume. However, it follows from [6], Proposition 1, that such a
group is always Zariski dense in PSO(n + 1, 1) or PO(n + 1, 1) if it acts irreducibly in Hn+1. In
terminology due to P. Sarnak, Γ is a thin group.

Remark 7.6. Let Γ be an integral Kleinian group of isometries of Hn of finite covolume, for exam-
ple, the orthogonal group of some integral quadratic lattice L. It is obviously geometrically finite,
however, for n > 3 it may contain finitely generated subgroups which are not geometrically finite.
In fact, for any lattice L of rank ≥ 5 that contains a primitive sublattice I1,3, the orthogonal group
O(L) contains finitely generated but not finitely presented subgroups (see [29]).

This shows that not every group of automorphisms of an Enriques or a K3 surface is geometrically
finite. For example, we can consider the lattice M = I1,4(2) = 〈2〉 ⊥ A⊥4

1 . Its group of automor-
phisms is isomorphic to Or(I1,4) and hence it is not finitely presented. It is easy to embed M in the
lattice E10 isomorphic to the numerical lattice of an Enriques surface. We map a copy of ≤ 2〉 to
Z(f + g), where (f, g) are the standard generators of the hyperbolic summand U. One copy of A1
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we map to Z(f−g). The other copies ofA1 we map to three orthogonal sublattices of the summand
E8. A subgroup of finite index of O(M) extends to a subgroup of O(E10) thata cts identically on
the orthogonal complement. Taking X general enough, and using that Aut(X)∗ is of finite index in
O(N1(X)), we realize a finite index subgroup of O(M) as a group of automorphisms of X .

A similar construction works for K3 surfaces. This time we take the lattice I1,4(4) in order to get
a K3 surface without smooth rational curves. By taking X general enough, we see that a subgroup
of finite index of O(M) is realized as a group of automorphisms of the surface. This shows that
there exist K3 surfaces whose automorphism groups are not geometrically finite.

A sphere packing P(P ) in Ên defined by a Boyd-Maxwell polytope P is called integral if P is
a lattice polytope and the there exists a real number λ such that the curvature k of any sphere in P
belongs to λZ. The number λ is called the scale of the integral packing.

Let N(P ) be the Z-span of the vectors

vi = ωi/ci.

Since

ciei =
n+1∑
k=1

gikciωk =
n+1∑
k=1

cickgikωk,

we obtain that M(P ) ⊂ N(P ). Let

C = diag(c1, . . . , cn+1),

Then CG(P )C is an integral matrix, hence dC−1G(P )−1C−1 is an integral matrix, where

d = |C|2|G(P )|.

This implies that
bij = dgij/cicj ∈ Z,

and hence

dvi =

n+1∑
k=1

gikek/ci =

n+1∑
k=1

bikckek

This shows that dN(P ) ⊂M(P ), and hence N(P ) ⊂M(P )⊗Q. We also (vi, cjej) = δij , hence
N(P ) is the dual lattice of M(P ) and the discriminant of M(P ) is a divisor of d.

Theorem 7.7. Let P be a lattice Boyd-Maxwell polytope with multiplier (c1, . . . , cn+1) and Gram
matrix G(P ) = (gij). Suppose that ci/

√
−gii, where gii < 0, does not depend on i and M(P )

contains an isotropic vector. Then there exists an isometry σ of Hn such that the image of σ(P )
defines an integral sphere packing with the scale ci/

√
−gii.
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Proof. Choose a Z-basis v1, . . . , vn+1 inM(P ) with Gram matrixC ·G(P )·C. Let f =
∑n+1

i=1 aivi
be an isotropic vector in M(P ). We can find vectors w2, . . . , wn+1 ∈ Rn+1 such that the matrix X
whose first rows is the vector (a1, . . . , an+1) and the remaining n rows are the vectors wi satisfies

X · (C ·G(P ) · C) · tX = (X · C) ·G(P ) · t(X · C) = Jn+1.

As in the proof of Theorem 7.3, we deduce from this that

G(P )−1 = t(X · C) · Jn+1 · (X · C).

This shows that the columns of t(X · C)−1 can be taken as the normal vectors e′i of a polytope P ′

with G(P ) = G(P ′). Since (e1, . . . , en+1) and (e′1, . . . , e
′
n+1) are two bases of the same space R1,n

with the same Gram matrix, there exists an isometry of R1,n that sends one basis to another. It de-
fines an isometry σ of Hn such that σ(P ) = P ′. The columns of X ·C are the fundamental weights
ω′1, . . . , ω

′
n+1 of P ′. The first coordinates of these vectors are equal to (c1a1, . . . , cn+1an+1). Sup-

pose gii < 0, i.e. ωi is a real fundamental weight. Then ki = ciai/
√
−gii is the curvature of the

sphere defined by the normalized weight ω̄i.

From now on, to simplify the notation, we assume that P = P ′. Since the vectors vi = ωi/ci =√
−giiω̄i/ci span the ΓP -invariant lattice N(P ), we obtain that any vector γ(ω̄i), γ ∈ ΓP , is equal

to a linear combination of the vectors ci
√
−giivi with integral coefficients. This shows that the

curvature of the sphere defined by s(ω̄i) is equal to a linear combination of the numbers ci/
√
−giiai

with integral coefficients, and hence is an integer.

Remark 7.8. The condition thatM(P ) contains an isotropic vector is always satisfied is rank M(P ) =
n+ 1 ≥ 5. Also, if there is only one real fundamental root, any sphere packing defined by a lattice
Boyd-Maxwell polytope is integral.

Let us see how to compute gii if we know the Coxeter diagram of P . It is clear that gii is equal
to ∆ii/|G(P )|, where ∆ii is the principal n× n-minor of G(P ) obtained by deleting the i-column
and the ith row. It is equal to the determinant of the Gram matrix of e1, . . . , en+1 with ei omitted.

Example 7.9. Lattice Boyd-Maxwell polytopes exist in all dimensions n ≤ 10. Here are examples
of lattice Boyd-Maxwell polytopes in H7: Here + means that the vertex corresponds to a real

Figure 7.4: Examples of lattice Boyd-Maxwell polytopes in H7

fundamental weight. The multiplier vector for each t polytope is
√

2(
√

2, 1, 1, 1, 1, 1, 1, 1). The
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matrix

C ·G(P ) · C =



−4 2 0 0 0 0 0 0
2 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 1 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 0 0
0 0 0 1 0 0 −2 1
0 0 0 0 0 0 1 −2


.

One can show that
M(P ) ∼= E6 ⊥ U(2). (7.15)

The discriminant groupM(P )∨/M(P ) is isomorphic to Z/2Z⊕Z/6Z and the discriminant is equal
to −12.

We have gii < 0 only the vertices which come with sign +. An easy computation gives that√
−gii = 1/

√
6) and ci =

√
2. So the packing is integral with the scale equal to

√
12.

In the second example, the multiplier is
√

2(1, . . . , 1). The matrix

C ·G(P ) · C =



−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 1
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 1 0 0 0 1 −2


.

One can show that
M(P ) ∼= A5 ⊥ A1 ⊥ U.

The discriminant group M(P )∨/M(P ) is isomorphic to Z/12Z and the discriminant is equal to
−12.

We have gii < 0 only for the first extreme vertex on the left. An easy computation gives that√
−gii = 1 and ci =

√
2. So the packing is integral with the scale equal to

√
2.

Example 7.10. Let P be an Apollonian polyhedron in H3. We know thatG(P ) = circ(−1, 1, 1, 1),
so it is an integral matrix. The lattice M(P ) is an odd lattice. In the basis formed by the vectors
e1, e1 + e2, e1 + e3, e1 + e2 + e3 − e4, the Gram matrix becomes equal to

−1 0 0 0
0 0 2 0
0 2 0 0
0 0 0 −4


This shows that,

M(P ) ∼= 〈−1〉 ⊕ U(2)⊕ A1(2). (7.16)
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For applications to algebraic geometry, we need to consider the maximal even sublattice M(P )ev

of M(P ). It is easy to see that

M(P )ev ∼= U(2) ⊥ A1(2) ⊥ A1(2). (7.17)

Since the entries of G(P ) are integers, the multiplier is the vector (1, 1, 1, 1). Also gii = −1/4
for all i. This shows that P is a lattice polytope that defines an integral packing with the scale equal
to 1. We may take for the curvature vector k of a cluster any solution of the Descartes equation.

Finally, let us see that, for any lattice Boyd-Maxwell polytope, the group ΓP is realized as the
group Aut(X)∗ for some K3 surface.

In order to do it, we first realize the latticeM(P ) as the Picard latticeN1(X) for some K3 surface.
We use the following proposition from [?], Theorem 1.14.4.

Proposition 7.11. Let M be an even quadratic lattice of signature (1, n). Suppose n ≤ 18, and
the minimal number of generators of the discriminant group is less than 20 − n. then there exists
unique primitive embedding of M in the lattice U ⊥ U ⊥ U ⊥ E8 ⊥ E8.

Applying the theory of periods, we deduce from this proposition that there exists a 19 − n-
dimensional family of non-isomorphic algebraic K3 surfaces such that M ⊂ N1(X). For a general
member of this family, we have the equality. We know that rank M(P ) ≤ 11, i.e. n ≤ 10. Suppose
n ≤ 9. Then the number of generators of the discriminant group is less than or equal than the rank.
This implies that the lattice M(P )(2) satisfies the conditions of the proposition. Hence there exists
a K3 surface with N1(X) ∼= M(P )(2). Since M(P ) does not have vectors of norm−2, the surface
does not contain smooth rational curves. Applying Theorem 6.4, we obtain that

ΓP ⊂ Aut(X)∗.

The only remaining case to consider is when n = 10. There is only one lattice Boyd-Maxwell
polytopes in H10. Its Coxeter diagrams is T2,3,8. It defines the lattice

M(P ) ∼= E11
∼= E8 ⊥ U ⊥ A2.

This case still covered by Theorem 1.14.4 that treats also the case when the minimal number of gen-
erators of the discriminant group is equal to the rank (the assumption from the theorem is satisfied
if U(2) is a direct summand of M ). Thus, we can realize M(P )(2) as the Picard lattice of a K3
surface, and obtain the following theorem

Theorem 7.12. Let P be a lattice Boyd-Maxwell polytope in Hn. Then there exists a K3-surface X
(depending on 19− n parameters) such that

ΓP ⊂ Aut(X)∗.

Note that ΓP is a subgroup of the reflection group of the lattice M(P )(2). The lattice M(P )(2) is
reflexive if and only if the lattice M(P ) is reflexive. For most of the Boyd-Maxwell polytopes the
lattice M(P ) nor M(P )ev is reflexive. For example, this is true for the Apollonian lattice. So, the
group ΓP is of infinite index in Aut(X)∗.
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Lecture 8

Orbital degree counting

Let X be an smooth projective algebraic surface with a fixed projective embedding X ↪→ PN that
defines the class h ∈ N1(X) of a hyperplane section. Let c = [C] ∈ N1(X) be the numerical class
of an irreducible curve on X and OΓ(c) be its orbit with respect to a subgroup Γ of Aut(X)∗. Note
that h · c is equal to the degree of C in PN .

For any real T > 0, let

Nc,h,Γ(T ) = #{c′ ∈ OΓ(c) : (h, c) < T}.

We would like to find an asymptotic of this function when T goes to infinity. It turns out that it can
be expressed in terms of the Hausdorff dimension of the limit set Λ(Γ) of the group Γ when Γ is not
an elementary discrete group.

Let A be a subset of the Euclidean space Rn. Recall that the Hausdorff dimension H.dim(A) of
A is defined to be the infimum for all s ≥ 0 for which

µs(A) = inf
A⊂∪jBj

(
∑
j

r(Bj)
s) = 0. (8.1)

Here (Bj) is a countable set of open balls of radii r(Bj) which cover A.

For example, if the Lebesque measure of A is equal to 0, then (8.1) holds for s = n, hence
H.dim(A) ≤ n. The Hausdorff dimension coincides with the Lebesque measure if the latter is
positive and finite. A countable set has the Hausdorff measure equal to zero. Also it is known that
the topological dimension of A is less than or equal to its Hausdorff dimension.

The Hausdorff dimension is closely related to the fractal dimension of a fractal set A, i.e. a
set that can be subdivided in some finite number N(λ) of subsets, all congruent (by translation or
rotation) to one another and each equal to a scaled copy of A by a linear factor λ. It is defined to
be equal to logN(s)

log(1/λ) . For example, the Cantor set consists of two parts A1 and A2 (contained in the
interval [0, 1/3] and [1/3, 1]), each rescaled version of the set with the scaling factor 1/3. Thus its

59
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fractal dimension is equal to log 2/ log 3 < 1. It is clear that the Hausdorff dimension of a bounded
fractal set of diameter D = 2R is less than or equal than the fractal dimension. In fact, such a set
can be covered by N(λ) balls of radius λR, or by N(λ)2 balls of radius λ2R. Since λ < 1, we
get µs(A) = limk→∞

N(λ)k

(λkR)s
which is zero if N(λ)λs < 1 or s > logN/ log(1/λ). In fact, the

Hausdorff dimension of the Cantor set coincides with its fractal dimension log 2/ log 3.

By a theorem of D. Sullivan [46], for a geometrically finite non-elementary discrete group Γ, the
Hausdorff dimension δΓ of Λ(Γ) is positive and coincides with the critical exponent of Γ equal to

inf{s > 0 :
∑
g∈Γ

e−sd(x0,g(x0)) <∞}, (8.2)

where x0 is any point on Hn. Using this equality, Sullivan shows that

δΓ = lim
T→∞

logNT

R
, (8.3)

whereNT is the number of orbit points y with hyperbolic distance from x0 less than or equal thanR.
He further shows in [47], Corollary 10, that under the additional assumption that Γ has no parabolic
fixed points, that there exists constants c, C such that, as T →∞,

ceTδΓ ≤ NT ≤ CeTδΓ . (8.4)

In particular, asymptotically, as T →∞,

NT ∼ c(T )eTδΓ ,

where lim
T→∞

c(T )
T = 0.

If δΓ >
1
2(n−1), then P. Lax and R. Phillips show that, for any geometrically finite non-elementary

discrete group Γ, the function c(T ) is a constant depending only on Γ. When Γ is of finite covolume,
then δΓ is known to be equal to n − 1, and the result goes back to A. Selberg. The assumption on
δΓ has been lifted by T. Roblin [43].

Recall that, in the vector model of Hn, the hyperbolic distance d(x, y) between two points is
expressed by (2.1) in terms of the inner product (x, y), where x, y are represented by vectors in
R1,n with norm equal to 1. Taking x = [h] and y = [c], where C2 > 0, we obtain that

NT (c, h,Γ) ∼ cΓ,c,hT
δΓ ,

for some constant cΓ,c,h.

In order to obtain similar formula in the cases when C2 ≤ 0, we need to replace the family
of hyperbolic balls with another family of sets of growing volume. In Lecture 3, we defined the
distance form a point x ∈ Hn to any point [e] ∈ Pn(R).

In each of the three cases” [e] ∈ Hn, [e] ∈ ∂Hn, [e] 6∈ Hn, let us consider the sets

BT (e) = {x ∈ Hn : d(x, [e]) ≤ T}.
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Let Γ be a discrete subgroup of Iso(Hn) and let x0 ∈ Hn. One can show that the intersection
of this set with the orbit OΓ(x0) can be expressed We have the following result which is combined
effort of several people ( [41], Theorem 1.2 and [37], Corollary 7.14), see a nice survey of some of
these results in [40]).

Theorem 8.1. Let Γ be a geometrically finite non-elementary discrete subgroup of Iso(Hn). Let
[e] ∈ PnbbR). If (e, e) ≤ 0, assume that Γ+ = Γ ∩ Iso(Hn)+ is Zariski dense in the Lie group
Iso(Hn)+ and also that δΓ > 1 if (e, e) < 0. Then

lim
T→∞

#{OΓ(x0) ∩BT (e)} ≤ T
T δΓ

= cΓ,x0,[e],

where cΓ,x0,[e] is a positive constant that depends only on Γ, x0, [e].

Note that the results from [37] also give error terms.

Remark 8.2. In fact, the assertion which we use is stated in other terms, however, using Proposition
3.1, one can show that this is equivalent to the assertion of the theorem.

Remark 8.3. Note that the condition that Γ+ is Zariski dense in Iso(Hn)+ is satisfied if Γ originates
from an irreducible representation in R1,n ( [6], Proposition 1).

In the case when (e, e) > 0 (resp. (e, e) = 0 and n = 3), Theorem 8.1 follows from [41], Theorem
1.2 (resp. [31], Theorem 2.10) that gives an asymptotic of the number of orbit points in a ball
{[v] ∈ Hn : ||v|| ≤ T}, where ||x|| is the Euclidean norm. One has only use that if v = (x0, . . . , xn)
with

∑n
i=0 x

2
i ≤ T 2 and x2

0 −
∑n

i=1 x
2
i = 1 (resp. = 0), then (v, (1, . . . , 0))2 = x2

0 ≤ (T 2 + 1)/2
(resp. ≤ T 2).

In the case (e, e) > 0, and Γ and Γ ∩ G[e] are of finite covolume (the second condition is always
satisfied if n ≥ 3 [14]), Theorem (8.1) follows from [21], [22]. In this case δΓ = n− 1.

Using that d(γ(g−1([e]), x0) = d([e], γ(x0)), and taking x0 = [h], [e] = [C], we obtain

Corollary 8.4. LetX be a surface of Kodaira dimension 0 or a rational surface obtained by blowing
up N ≥ 10 points in P2. Let Γ ⊂ Aut(X)∗ be a non-elementary subgroup. Let h be the numerical
class of a hyperplane section of X in some projective embedding and c = [C] be the numerical
class of some irreducible curve on X . If C2 ≤ 0, assume that Γ acts irreducibly in N1(X)R. Then

lim
T→∞

NΓ,C,h
#{c′ ∈ OΓ(c) : (c, h) ≤ T}

T δΓ
= cΓ,x0,[e],

where cΓ,c,h is a positive constant that depends only on Γ, c, h.

Example 8.5. Let Γ = UC(4) be the universal Coxeter group. We can realize it as a subgroup of
Aut(X)∗, where X is a K3 surface with the Picard lattice given in (7.17). However, I do not know
an explicit construction of a K3 surface whose Picard lattice is isomorphic to this lattice. Instead we
consider a surface X in (P1)4 from example 6.3. The Picard lattice of this surface is given by the
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matrix circ(0, 2, 2, 2). If we change the basis (f1, f2, f3, f4) to (f1, f2, f3 − f1 + f2, f1 + f2 − f4),

then the matrix becomes equal to
(

0 2 0 0
2 2 0 0
0 0 −4 2
0 0 2 −4

)
. This shows that

N1(X) ∼= U(2) ⊥ A2(2).

The limit set of UC(4) has been computed up to nine decimals in [48] (see also [34]). We have

δUC(4) = 1.305686729....

Since UC(4) acts irreducibly in H3, we can apply Corollary 8.4 to obtain the asymptotic of the
growth of degrees of curves on X in an orbit of Γ.

One can also realize UC(4) as acting on an Enriques surface. We consider the lattice

M(P )ev(1/2) ∼= U ⊥ A1

and embed it primitively in the numerical lattice N1(X) of an Enriques surface. Recall that the
latter is isomorphic to E10

∼= U ⊥ E8. We assume that X has no smooth rational curves. So, the
automorphism group of X is a subgroup of finite index in O(E10). This shows that a subgroup of
finite index of UC(4) is realized as a group of automorphisms of X .

Example 8.6. Consider the Coxeter group Γ(a, b, c) of a Coxeter triangle ∆(a, b, c) in H2 defined

by the Gram matrix
(
−1 a b
a −1 c
b c −1

)
, where a, b, c are rational numbers ≥ 1. If a = b = c = 1,

the fundamental domain is an ideal triangle. If a, b, c > 1, the fundamental triangle is as on the
following picture.

Figure 7: Hyperbolic triangle with no vertices

Obviously the triangles are lattice Coxeter polytopes with multiplier (
√
N,
√
N,
√
N), where N

is the least common denominator of a, b, c. We know that Γ(a, b, c) leaves the lattice M generated
by Nei’s invariant. Since the rank of M is small, the lattice M(2) does not contain vectors of norm
−2 and can be realized as the Picard lattice of some K3 surface X without smooth rational curves.
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Figure 8: Hyperbolic triangle with one ideal point

Thus Γ(a, b, c) can be realized as a subgroup of Aut(X)∗. For example, let us consider the case
(a, b, c) = (a, a, 1). The fundamental triangle has one ideal point and looks like in the following
figure 8.6.

Note that when r = a = 1, the lattice Lr is isomorphic to the Apollonian lattice Ap1 and the
group Γ1 is isomorphic to the Apollonian group Ap1.

Let H2 → H2 be the map from the upper-half plane to the unit disk given by the map z 7→ z−i
z+i .

One can show that the pre-image of the sides of our triangle are the lines x = 1, x = −1 and
the upper half-circle of radius r = 1/a with center at the origin. Recall that a ≤ −1 so that the
half-circle is between the vertical lines. Let us re-denote our group Γa,a,1 by Γr. It was shown by
C. McMullen in [34] that as r → 0, we have

δΓr =
r + 1

2
+O(r2),

while for r → 1, we have

δΓr ∼ 1−
√

1− r.

Example 8.7. Let us give another example of a realizable group Γ(a, b, c). It is taken from [3].
Let X be a K3 surface defined over an algebraically closed field of characteristic 6= 2 embedded in
P2 × P2 as a complete intersection of hypersurfaces of multi-degree (1, 1) and (2, 2). Let p1, p2 :
X → P2 be the two projections. They are morphisms of degree 2 branched along a plane curve
Bi of degree 6. We assume that B1 is nonsingular and B2 has a unique double point q0 so that the
fiber p−1

2 (q0) is a smooth rational curve R that is mapped isomorphically under p1 to a line. We
assume that X is general with these properties. More precisely, we assume that Pic(X) has a basis
(h1, h2, r), where hi = p∗i (line) and r is the class ofR. The intersection matrix of this basis is equal
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to 2 4 1
4 2 0
1 0 −2

 .

Let s = p∗1((p1)∗(r))− r = h1 − r. It is the class of smooth rational curve S on X . The pre-image
of the pencil of lines through q0 is an elliptic pencil |F | on X with [F ] = h2 − r. The curve S is a
section of the elliptic fibration defined by the linear system |F | and the curve R is its 2-section that
intersects S with multiplicity 3. Consider the following three automorphisms of X . The first two
Φ1 and Φ2 are defined by the birational deck transformations of the covers p1 and p2. The third one
Φ3 is defined by the negation automorphism of the elliptic pencil with the group law defined by the
choice of S as the zero section.

It is easy to compute the matrix of each Φi in the basis (f, s, r) = ([F ], [S], [R]) with the Gram
matrix 0 1 2

1 −2 3
2 3 −2

 .

We have Φ∗1(s) = r,Φ∗1(r) = s and f ′ = Φ∗1(f) = af + bs + cr. Since Φ2
i is the identity and

(f, f) = 0, we get a = −1 and b = c. Since (f ′, s) = (f, r) = 2, we easily get b = c = 3. The
matrix of Φ1, and similarly obtained matrices of Φ2 and Φ3 are as follows.

A1 =

−1 0 0
3 0 1
3 1 0

 , A2 =

1 4 0
0 −1 0
0 1 1

 , A3 =

1 0 14
0 1 4
0 0 −1

 .

The transformations Φ′1 = Φ1 ◦ Φ2 ◦ Φ1,Φ2,Φ3 are the reflections with respect to the vector αi,
where

α1 = −4f + 13s+ 10r, α2 = 4f − 2s+ r, α3 = 7f + 2s− r.

The Gram matrix of the vectors α1, α2, α3 is equal to

G =

−22 143 220
143 −22 22
220 22 −22

 = −22

 1 −13
2 −10

−13
2 1 −1

−10 −1 1

 .

So, the group generated by Φ′1,Φ2,Φ3 coincides with the triangle group Γ(13
2 , 10, 1). The funda-

mental triangle P has one ideal vertex. The reflection group ΓP is a subgroup of infinite index of
the group Γ of automorphisms of X generated by Φ1,Φ2,Φ3. Baragar proves that Γ is isomorphic
to Aut(X) (for sufficiently general X). He finds the following bounds for δΓ

.6515 < δΓ < .6538.

Example 8.8. This is again due to Baragar [4]. We consider a nonsingular hypersurface X in
P1×P1×P1 of type (2, 2, 2). It is a K3 surface whose Picard lattice contains the Apollonian lattice
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Ap(1). If X is general, then the Picard lattice coincides with this lattice. We assume that one of
the projections pij : X → P1 × P1, say p12, contains the whole P1 as its fiber over some point
q0 ∈ P1×P1 . All the projections are degree 2 maps. Let Fi, i = 1, 2, 3, be the general fibers of the
projections pi : X → P1. Each Fi is an elliptic curve whose image under the map pjk is a divisor of
type (2, 2). Let f1, f2, f3, r be the classes of the curves F1, F2, F3, R. We assume that X is general
with these properties so that Pic(X) is generated by these classes. The Gram matrix of this basis is
equal to 

0 2 2 0
2 0 2 0
2 2 0 1
0 0 1 −2

 .

It is easy to see that
Pic(X) ∼= U⊕

(−4 2
−2 −8

)
.

According to Vinberg’s classification of 2-reflective hyperbolic lattices of rank 4 [51], the Picard
lattice is not 2-reflective. Hence the image of the group Aut(X) in O(Pic(X)) is of infinite index.

Let Φij be the automorphisms ofX defined by the deck transformations of the projections pij . Let
Φ′4 be defined as the transformation Φ3 in the previous example with respect to the elliptic pencil
|F3| with sectionR. The transformation Φ∗12 leaves the vectors f1, f2, r invariant, and transforms f3

to 2f1+2f2−f3−r. Thus Φ∗12 is the reflection with respect to the vector α1 = −2f1−2f2+2f3+r.

The transformation Φ∗13 leaves f1, f3 invariant and transforms r in r′ = f1 − r. It also trans-
forms f2 to some vector f ′2 = af1 + bf2 + cf3 + dr. Computing (f ′2, f1) = (f2, f1), (f ′2, f3) =
(f2, f3), (f ′2, r) = (f2, f1 − r), we find that f ′2 = 2f1 − f2 + 2f3. Similarly, we find that
Φ∗23(f2) = f2,Φ

∗
23(f3) = f3,Φ

∗
23(r) = f2 − r and Φ∗23(f2) = −f1 + 2f2 + 2f3.

It follows from the definition of a group law on an elliptic curve that

Φ′4
∗(f3) = f3, Φ′4

∗(r) = r, Φ′4
∗(fi) = −fi + 8f3 + 4r, i = 1, 2

Consider the transformations

Φ1 = Φ12, Φ2 = Φ13 ◦ Φ12 ◦ Φ13, Φ3 = Φ23 ◦ Φ12 ◦ Φ23, Φ4 = Φ′4 ◦ Φ12 ◦ Φ′4.

These transformations act on Pic(X) as the reflections with respect to the vectors

α1 = −2f1 − 2f2 + 2f3 + r,

α2 = Φ∗13(α1) = −5f1 + 2f2 − 2f3 − r,
α3 = Φ∗23(α1) = 2f1 − 5f2 − 2f3 − r,
α4 = Φ4(α1) = 2f1 + 2f2 − 30f3 − 15r.

The Gram matrix of these four vectors is equal to
−14 14 14 210
14 −14 84 182
14 84 −14 182
210 182 182 −14

 = −14


1 −1 −1 −15
−1 1 −6 −13
−1 −6 1 −13
−15 −13 −13 1


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Let P be the Coxeter polytope defined by this matrix. The Coxeter group ΓP is generated by the
reflections Φ∗i , i = 1, 2, 3, 4.

Baragar proves that the automorphisms Φij and Φ′4 generate a subgroup Γ of Aut(X) of finite
index. His computer experiments suggest that

1.286 < δΓ < 1.306.

Our reflection group ΓP generated by Φ1, . . . ,Φ4 is of infinite index in Γ. So, we obtain

δΓP < 1.306.



Lecture 9

Cremona transformations

A birational transformation of Pn over a field k is called a Cremona transformation. It can be
defined, algebraically, as an automorphism of the field of rational functions on Pn isomorphic to
k(z1, . . . , zn) or, geometrically, as an invertible rational map given by a formula

Φ : Pn 99K Pn, (t0, . . . , tn) 7→ (P0(t), . . . , Pn(t)),

where P0, . . . , pn are mutually coprime homogeneous polynomials of some degree d. The set of in-
determinacy points Bs(Φ) of Φ is equal to the set of common zeros of the polynomials P0, . . . , Pn.
It has a structure of a closed subscheme of Pn, called the base scheme of Φ. All Cremona transfor-
mations form a group denoted by Crn(k). It is called the Cremona group in dimension n. Obvi-
ously, Crn(k) contains the group of projective transformations of Pn isomorphic to PGLn(k). Its
elements correspond to transformations defined by linear homogeneous polynomials. Obviously,
Cr1(k) = PGL2(k), so we assume n > 1.

When n = 2, according to the famous Noether Theorem, the group Cr2(C) is generated by
PGL2(C) and the standard quadratic transformation T2 defined, algebraically, by (z1, z2) 7→
(1/z1, 1/z2), and, geometrically, by (t0, t1, t2) 7→ (t1t2, t0t2, t0t − 1). It is an involution, i.e.
T 2

2 is the identity.

A convenient way to partially describe a Cremona transformation Φ uses the definition of the
characteristic matrix. As any rational map, Φ defines a regular map ΦU of an open Zariski subset
U = Pn \Bs(Φ) to Pn. Let ΓΦ denote the Zariski closure of the graph of ΦU in Pn×Pn. Let π and
σ be the first and the second projection maps, so that we have the following commutative diagram.

ΓΦ

σ

!!π}}
Pn Φ // Pn

(9.1)

Let Γ̃Φ be a resolution of singularities of ΓΦ, if it exists. If n = 2, it always exists and, moreover,

67
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we can choose it minimal so that it is uniquely defined, up to isomorphism. It is known that any
birational map of nonsingular varieties is a composition of the blow-ups with smooth centers. For
any such map f : X → Y one can see what happens with the Picard group; we have

Pic(X) = f∗(Pic(Y )⊕ Ze,

where e is the class in Pic(X) of the exceptional divisor f−1(Z), wherw Z is the center of the
blow-up. This allows one to define two bases in Pic(ΓΦ), one comes from π and another one comes
from σ. We have Pic(X) ∼= Zr, and the transition matrix of these two bases is the characteristic
matrix of T .

Let us consider the case n = 2. We have the following factorization of π : X = ΓΦ → P2.

π : X = XN
πN−→ XN−1

πN−1−→ . . .
π2−→ X1

π1−→ X0 = P2, (9.2)

where πi : Xi → Xi−1 is the blow-up of a point xi ∈ Xi−1. Let

Ei = π−1
i (xi), Ei = (πi+1 ◦ . . . πN )−1(Ei). (9.3)

Let ei denote the cohomology class [Ei] of the (possibly reducible) curve Ei. It satisfies e2
i =

ei ·KX = −1. One easily checks that ei · ej = 0 if i 6= j. Let e0 = π∗([`]), where ` is a line in
P2. We have e0 · ei = 0 for all i. The classes e0, e1, . . . , eN form a basis in N1(X) which we call a
geometric basis. The Gram matrix of a geometric basis is the diagonal matrix diag(1,−1, . . . ,−1).
Thus the factorization (9.2) defines an isomorphism of quadratic lattices

φπ : I1,N → N1(X), ei 7→ ei,

where e0, . . . , eN is the standard basis of the standard odd unimodular quadratic lattice I1,N of
signature (1, N). It follows from the formula for the behavior of the canonical class under a blow-
up that KX is equal to the image of the vector

kN = −3e0 + e1 + . . .+ eN .

This implies that the quadratic lattice K⊥X is isomorphic to the orthogonal complement of the vector
kN in I1,N . It is a special case of quadratic lattices considered in Example 5.5. We have

k⊥N
∼= EN

The restriction of φπ to k⊥N defines an isomorphism of lattices

φπ : EN (−1)→ S0
X .

Let us identify the Coxeter groupW (EN ) with the subgroup of O(I1,N ) generated by the reflections
in the vectors αi from Example 5.5. It is contained in the reflection group Ref2(K⊥X).

The following theorem is due to S. Kantor and goes back to the end of the 19th century. It has
been reproved in modern terms by M. Nagata and others.
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Theorem 9.1. Let (e0, . . . , eN ) be a geometric basis defined by the birational morphism π. Then
the geometric basis (e′0, e

′
1, . . . , e

′
N ) is expressed in terms of (e0, e1, . . . , eN ) by a matrix A which

defines an orthogonal transformation of I1,N equal to the composition of reflections with respect to
the root basis (α0, . . . , αN−1) of EN .

The matrix A is the characteristic matrix of Φ. For any plane H(a) :
∑
aiyi = 0 in Ps, its pre-

image under the rational map Φ is equal to a curve V (a) :=
∑
aiPi(t) = 0 of degree d, where Pi

are the polynomials defining Φ. One can show that the class π−1(e′0) = de0−m1e1−· · ·−mNeN ,
where mi are the multiplicities of a general hypersurface V (a) at the points xi (this has to be
carefully defined if the points are infinitely near).

Also, the class π(σ∗(e′i)) is the class of a curve Ci in P2 whose image under T is the point yi
defined by e′i. We have σ∗(e′i) = die0 −m1ie1 − · · · −mNieN , where di is the degree of the curve
Ci and mki are the multiplicities of Ci at the points xi. Thus the characteristic matrix A has the
following form

A =


d d1 . . . dN
−m1 −m11 . . . m1N

...
...

...
...

−mN −mN1 . . . −mNN

 .

The matrix A is orthogonal with respect to the inner product given by the matrix JN . It defines an
isometry of the hyperbolic space HN .

Example 9.2. Let Φ = T2 be the standard quadratic transformation. Its base scheme consists of
three points p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1]. LeThe graph of Φ is the closure of points
{(x, y) ∈ P2×P2 : y = Φ(x)}. In formulas, it is contained in the subvariety of P2×P2 defined by
the condition that

rank

(
y0 y1 y2

t1t2 t0t1 t0t1

)
= 1.

Each minor of this matrix is a bihomogeneous polynomial of bidegree (1, 2) in the variables y, t. If
t0 6= 0, we can use the affine coordinates x1 = t1/t0, x2 = t2/t0, the equations become x2(y0 −
y1x1) = x1(y0 − y2x2) = y1x1 − y2x2 = 0. They define a reducible variety with one irreducible
component besides the graph ΓT isomorphic to P2 and defined by the equations x1 = x2 = 0. If we
throw it away the graph will be defined by the equations y0−y1x1 = y0−y2x2 = y1x1−y2x2 = 0.
It is easy to see that ΓT over the affine open set t0 6= 0 becomes isomorphic to the subvariety of
A2 × P1 given by one equation y1x1 − y2x2 = 0. This is the definition of the blow-up of the point
[1, 0, 0]. Replacing p1 with p2 and p2, we find that ΓT is isomorphic to the blow-up X of the points
p1, p2, p3. It is known as a del Pezzo surface of degree 6

The complement of the three coordinate lines ti = 0 on the surface X consists of six (−1)-curves
E1, E2, E3 and L1, L2, L3 which intersect each other as in the following picture. The images of the
curves Ei are the points pi, and the images of the curves Li are the coordinate lines ti = 0.

It is clear from the formula for T2 that the transformation blows down the coordinate line ti = 0
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E1 L1

L3 E2

L2 E3

Figure 9.1: del Pezzo surface of degree 6

to the point pi. The characteristic matrix of T2 is equal to

A =


2 1 1 1
−1 0 1 1
−1 1 0 1
−1 1 1 0

 .

Note that the matrix is the matrix of the reflection sα1 , where α1 = e0 − e1 − e2 − e3.

Example 9.3. Recall that the reflections se in H3 act as the inversion transformations in Ê2 corre-
sponding to the circles defined by the hyperplane of fixed points. This transformation is an example
of a (real) Cremona transformation known since the antiquity. Given a circle of radius R, a point
x ∈ R2 with distance r from the center of the circle is mapped to the point on the same ray at the
distance R/r (as in the picture below).

Rr

R
r

•

•

Figure 9.2: Inversion transformation

In the affine plane C2 the transformation is given by the formula

(x, y) 7→
( Rx

x2 + y2
,

Ry

x2 + y2

)
.
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In projective coordinates, the transformation is given by the formula

(t0, t1, t2) 7→ (t21 + t22, Rt1t0, Rt2t0). (9.4)

Note that the transformation has three fundamental points [1, 0, 0], [0, 1, i], and [0, 1,−i]. It is an
involution and transforms lines not passing through the fundamental points to conics (circles in the
real affine plane). The lines passing though one of the fundamental points are transformed to lines.
The lines passing through the origin (1, 0, 0) are invariant under the transformation. The conic
t21 + t22 −Rt20 = 0 is the closure of the set of fixed points.

It follows from formula (9.4) that the indeterminacy points of the inversion transformation are
three points p1 = [1, 0, 0], p2 = [0, 1,

√
−1], p3 = [0, 1,−

√
−1] that lie on the line at infinity

t0 = 0. Of course, over reals the only indeterminacy point is the first point. The line t0 = 0 is
blown down to the point p1. The line joining p1, p2 (resp. p1, p3) is blown down to p2 (resp. p3).
The characteristic matrix

A =


2 1 1 1
−1 0 −1 −1
−1 −1 −1 0
−1 −1 0 −1

 .

It is the composition of two reflections sα1 ◦ sα2 , where α2 = e2 − e3.

One must be warned that the assigning to a Cremona transformation in the plane its characteristic
matrix is not a homomorphism. A subgroup Gof Crn(k) is called regularizable if there exists a
rational surface and a birational map φ : X → P2 such that φ−1 ◦ G ◦ φ ⊂ Aut(X). Here we
may assume that X be a basic rational surface. Any finite group is regularizable but not every
infinite group is. Let (e0, e1, . . . , en) be a geometric basis in N1(X). Let G be a regularizable
subgroup of Cr2(k) which is realized as a group of biregular automorphisms of X . Then we can
realize the characteristic matrix of any g ∈ G as a matrix of the automorphism π−1 ◦ g ◦ π in the
basis (e0, e1, . . . , en). This will give a matrix realization of the natural action homomorphismG′ →
O(N1(X)) and also a homomorphism G′ → O(k⊥X) ∼= O(En). The image of this homomorphism
is contained in the reflection group W2,3,n−3.

Example 9.4. Let X be a rational surface admitting a birational morphism π : X → P2. We say
that X admits a large group of automorphisms G if the image of G in W (En) is of finite index.
The examples of such surfaces are Halphen surfaces and Coble surfaces obtained by blowing up
9 base points p1, . . . , p9 of a pencil of curves of degree 3m of geometric genus 1 that pass through
the points p1, . . . , p9 with multiplicities equal to m (resp. at ten nodes of an irreducible rational
plane curve of degree 6). Under the assumption of generality of such a surface, one can prove that
Aut(X) is isomorphic to a normal subgroup of W (E9) (resp. W (E10) with the quotient isomorphic
to (Z/mZ)8 o O+(8,F2) (resp. O+(10,F2)). A theorem from [9] asserts that, if the characteristic
of the ground field char(k) is equal to zero, any rational surface with large automorphism group is
isomorphic to a general Halphen surface or a general Coble surface. If char(k) = p > 0, one has
to add one more type of a surface, the blow-up of a general set of m ≥ 9 points on a cuspidal cubic
(a Harbourne surface).
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There is a similar realization of the Weyl groups W (Ep,q,r) for any triple 1 < p ≤ q ≤ r. For
this one considers the product Xp,q = (Pq−1)p−1) and an ordered set P = (x1, . . . , xq+r) of q + r
points in Xp,q. Let π : Xq+r(P) → Xp,q be the blow-up of the set of P . The previous case
corresponds to (p, q, r) = (2, 3, N − 3). Let pi : Xp,q(P) → Xp,q → Pq−1 be the ith projection,
and hi = p∗i ([H]) is the class inN1(Xp,q(P)) of the pre-image of the class of a hyperplane in Pq−1.
Let ei be the class of the exceptional divisor Ei = π−1(xi). Also let hi = π∗([`]), where [`] is the
class in CH(Pq−1) of a line in Pq−1. Let ei be the class of a line in Ei. Then, we obtain a basis
(h1, . . . , hp−1, e1, . . . , eq+r) in Pic(Xp,q(P) and the dual basis (h1, . . . , hp−1,−e1, . . . ,−eq+r in
CHpq−p−q(Xp,q)) = Hom(Pic(Xp,q(P)),Z). We have

KXp,q(P) = −q(h1 + · · ·+ hp−1) + (pq − p− q)(e1 + · · ·+ eq+r).

Let
K∨X := −q((h1 + · · ·+ hp−1) + (pq − p− q)(e1 + · · ·+ eq+r

Following the definition of the lattice EP,q,r we define a root basis (α1, . . . , αp+q+r−1) in (K∨X)⊥

and a root basis (α1, . . . , αp+q+r−1) in K⊥X which we used in Example 5.5 to define the quadratic
lattice EP,q,r. Let Wp,q,r be the Weyl group of Ep,q,r. It acts on Pic(Xp,q(P)) and on its dual group
of 1-cycles.

Assume that P is a general set of points. More precisely, we assume that no element in theWp,q,r-
orbit of any root αi is represented by an effective divisor class (one root is enough). We say in
this case that P is an unnodal set of points. Then one can show that, for any w ∈ Wp,q,r the set
(w(e1), . . . , w(eq+r) can be represented by divisorsE′1, . . . , E

′
q+r that can be blown down to points

(x′1. . . . , x+q + r′) ∈ Xp,q (see [18]). Since the blow-down of E′i is defined only up to a projective
automorphism of Xp,q and we keep the order of points, we obtain that the set P ′ = (x′1, . . . , x

′
q+r)

is defined uniquely up to the natural action of (PGLq)
p−1 on the product Xp,q = (Pq−1)p−1.

Let
Xp,q,r = Xq+r

p,q /(PGLq)
p−1

be any birational model of the configuration space of q + r points on Xp,q (e.g. we may consider
any Geometric Invariant Theory quotient). The previous construction defines a homomorphism

crp,q,r : Wp,q,r → Bir(Xpqr) ∼= Cr(p−1)(q−1)(r−1)(k).

called the Cremona action of Wp,q,r.

Explicitly, it can be defined as follows. For brevity of notation we give this definition only in
the case p = 2 leaving the general case to the reader (who may consult [18]). The reflections
sαi , i > 1, generate the permutation group Sq+r. We let them act on Xp,q,r = (Pq−1)q+r by
permutation of the factors. The reflection sα1 acts as follows. We choose a representative of [P]
such that the first q points have coordinates [1, 0, . . . , 0], . . . , [0, . . . , 0, 1]. Then we consider the
Cremona transformation Tq−1 of Pq−1 defined, algebraically, by (z1, . . . , zq−1) 7→ (z−1

1 , . . . , z−1
q−1),

or, geometrically, by

(t0, . . . , tq) 7→ (t1 · · · tq, t0t2 · · · tq, . . . , t0 · · · tq−1).
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This is a generalization of the standard quadratic transformation T2. Then we define the action of
the reflection sα1 by sending [P] to [P ′], where P ′ = (x1, . . . , xq, Tq−1(xq+1), . . . , Tq−1(xp+q).

One can interpret the stabilizer subgroup (Wp,q,r)[P] of [P] ∈ Xp,q,r as follows. An element
w ∈ (Wp,q,r)[P] transforms a point set to projectively equivalent point set P ′. Let Φ : Xp,q(P) 99K
Xp,q(P) be a birational map that extends an isomorphism

Pq−1 \ P ∼= Xp,q(P) \ (E1 ∪ . . . ∪ Eq+r)→ Pq−1 \ P ′ ∼= Xp,q(P ′) \ (E′1 ∪ . . . ∪ E′q+r)

The general properties of rational maps of nonsingular projective varieties allow us to extend this
birational isomorphism to birational isomorphism of Ei to E′j . This defines a pseudo-isomorphism
Φ : Xp,q(P) 99K Xp,q(P ′). 1 On other hand, since we maya assume that P = P ′, the uniqueness
of the blow-up defines an isomorphism F : Xp,q(P) → Xp,q(P ′), the composition F−1 ◦ Φ is a
pseudo-automorphism of Xp,q(P).

So, we obtain the following.

Theorem 9.5. Let P be an ordered unnodal set of q + r points in Xp,q and let (Wp,q,r)[P] be the
stabilizer subgroup of Wp,q,r in the Cremona action of Wp,q,r on the configuration space Xp,q,r of
q + r points in Xp,q. Then

(Wp,q,r)[P] ⊂ PsAut(Xp,q(P)),

where PsAut(X) denotes the group of pseudo-automorphisms of a projective algebraic variety X .

Corollary 9.6. Let

cr2,3,N−3 : W (EN )→ Bir(X2,3,N−3) ∼= Cr2(N−4)(k)

be the Cremona action of W (EN ) on the configuration space of N points in P2. Then the stabilizer
W (EN )[P ] is isomorphic to a group of automorphisms of the surface X obtained by blowing up an
unnodal set of n points in P2.

This explains in another way why a group of automorphisms of a basic rational surface is isomor-
phic to a subgroup of W (EN ).

Following A. Coble one says that the closed subvariety Z of Xp,q,r is special if Z contains an
open subset of configurations of unnodal sets of points such that it is invariant with respect to the
Cremona action of Wp,q,r and the kernel of the action on Z is a subgroup of finite index. Points sets
defining general Halphen or Coble surfaces are examples of special sets of points in the plane. The
characterization of Halphen, Coble or Harbourne rational surfaces as surfaces with a large group of
automorphisms is equivalent to the classification of special sets of points in the plane

Other examples in higher dimensions discussed in [18].

1A pseudo-isomorphism of projective algebraic varieties is a birational map that induces an isomorphism between
open subsets with codimension of the complements ≥ 2. For surfaces, a pseudo-isomorphism is an isomorphism.
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Lecture 10

The simplicity of the plane Cremona
group

The question whether the group Cr2(k) is a simple as an abstract group was first raised by G.
Castelnuovo in 1896. It took more than a century before this question has been answered negatively
by S. Cantat and S. Lamy [10]. In this last lecture we shall discuss a proof of this result.

We have already seen that an infinite subgroup of automorphisms of a basic rational surface acts
on the hyperbolic space associated to its numerical lattice. One can define an action of the whole
Cremona group Cr2(k) on a certain infinite-dimensional hyperbolic space H∞ introduces by Yuri
Manin. This space is defined to be the inductive limit of the Picard groups of basic rational surfaces.
More precisely, one considers the category R whose objects are birational morphisms π : X → P2

and whose morphisms f : (X,π) → (X ′, π′) are regular maps f : X → X ′ such that π′ ◦ f = π.
The bubble space P̃2 is the factor set ( ⋃

(X
π′→P2)∈R

X
)
/ ∼,

where ∼ is the following equivalence relation: p ∈ X is equivalent to p′ ∈ X ′ if the rational map
π′−1 ◦ π : X 99K X ′ maps isomorphically an open neighborhood of p to an open neighborhood of
p′.

In other words, elements of the bubble space are points on some basic rational surface, and two
points are considered to be the same if there exists a birational map from one surface to another
which is an isomorphism in an open neighborhood of the points. This gives the needed formalism
to define infinitely near points.

A divisor on P̃2 is a divisor on some basic rational surface π : X → P2. Two divisors D on
π : X → P2 and D′ on π′ : X ′ → P2 are called linearly equivalent if there exists a morphism
f : X → X ′ in the category R such that f∗(D′) is linearly equivalent to D on X . The group of
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linear equivalence classes of divisors is denoted byN1(P2)bb. It is isomorphic to the inductive limit
of the Picard groups of basic rational surface.

Let
ιπ : Pic(X)→ N1(P̃2)

be the canonical homomorphism of the Picard group of an object π : X → P2 of the category
R. Let D be a divisor class linearly equivalent to a sum me0 +

∑
miei, where (e0, . . . , eN ) is

the geometric basis defined by the morphism π. Recall that each ei is associated to some point pi
in the bubble space. Thus we can identify elements of N1(P2)bb with formal integral finite sums
me0 +

∑
mipi, where pi ∈ P̃2 and e0 is the class of a line in P2.

We define the intersection form on N1(P2)bb extending by additivity the pairing

(e0, e0) = 0, (p, q) = −δp,q, (e0, p) = 0.

It is clear that
N1(P2)bb = N1(P2)⊕ ZP̃2

.

The real infinite-dimensional vector spaceN1((P2)bb)⊗R embeds naturally in the Hilbert Lorentzian
space R1,∞ of infinite sums d +

∑
p∈P̃2 app, where

∑
a2
p < ∞. We can define the associated

infinite-dimensional hyperbolic space by extending the vector model of a finite-dimensional hyper-
bolic space Hn

H∞ := {v ∈ R1,∞ : (v, v) = 1, (v, e0) > 0}.

The distance d(x, y) in H∞ is defined to beIt is clear that H∞ is an inductive limit of Hn.

A divisor on P̃2 can be written as a formal sum de0 −
∑
mixi, where

cosh d(x, y) = (x, y).

It is clear nor how to define an abstract H∞ by using any metric infinite-dimensional Hilbert space
equipped with a quadratic form of signature (1,∞). For any two points x, y ∈ H∞ there exists a
plane in R1,∞ containing these points. The distance defines a structure of a metric space on H∞,
i.e. it satisfies the triangle inequality. The latter implies that, for any three points x, y, z, one has

(y|z)x =
1

2
(d(y, x) + d(z, x)− d(y, z)) > 0.

A metric space is called δ-hyperbolic in the sense of Gromov if, for any four points x, y, z, w,

(x|z)w ≥ min{(x|y)w, (y|z)w} − δ.

For example, the Euclidean space is not a δ-hyperbolic for any δ, however a hyperbolic space Hn is
δ-hyperbolic with δ =

√
3 (see [12], p.11). Since any finite set of points in H∞ is contained in some

finite-dimensional Hn, we obtain that H∞ is
√

3-hyperbolic metric space. For the same reason, any
two points can be connected by a geodesic segment. A metric space satisfying this property is called
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geodesic. Thus H∞ is a geodesic δ-hyperbolic space. From now on we will be dealing with such
space H.

Let us explain how the Cremona group Cr2(k) acts on N1(P̃2). Let X → Γ(Φ) be a resolution
of singularities of the graph of T . Composing it with the two projections Γ(Φ) → P2, we obtain a
commutative diagram

X
σ

  π~~
P2 Φ // P2

(10.1)

The first (resp. the second) projection X → P2 defines a geometric basis (e0, . . . , eN ) (resp.
(e′0, . . . , e

′
N ) and the transformation ei 7→ e′i defined by the characteristic matrix of Φ is an isometry

of N1(X). We extend φ∗ to an isometry of N1(P̃2) by making it act identically on the orthogonal
complement N1(X)⊥ in N1(P̃2). I leave to the reader to check that it defines an action of Cr2(k)
on N1(P̃2). Note that the introduction of the bubble space and its Picard group makes possible to
define the composition of the characteristic matrices of Cremona transformations.

Let G be a group of isometries of H. The paper of Cantat and Lamy provides a criterion when the
minimal normal subgroup 〈〈g〉〉 containing g does not coincide with the whole G.

Let σ be an isometry of H. One defines its translation length as the limit

L(σ) = lim
n→∞

d(x, σn(x))

n
,

where x is any point in H. All isometries of H are divided into three classes: elliptic, parabolic,
hyperbolic. An elliptic isometry has a bounded orbit in H (e.g. a fixed point), a parabolic (resp.
hyperbolic) isometry has unbounded orbits and L(σ) = 0 (resp. L(σ) > 0). If H = Hn this agrees
with the earlier definition of elliptic, parabolic and hyperbolic isometries. This follows from our
description of such isometries in Lecture 3. A geodesic line invariant under σ is called the axis of
σ and is denoted by Ax(σ). In Hn this would be the unique geodesic line joining the two fixed
points on σ on the absolute. However, in general, the axis is not unique. Let Min(σ) be the set of
points y such that d(y, σ(y)) = L(σ). It is not empty if and only if σ is hyperbolic. The axis of σ
is contained in Min(σ), and σ acts on it by translation of length L(σ) along it. Note that one has to
assume something on a geodesic δ-hyperbolic space to guarantee that any hyperbolic isometry has
an axis (the space must be a CAT(0)-space, whatever it means). It is true for H∞.

If A,A′ are two subsets of H and α ∈ R, we set

A ∩α A′ = {x ∈ H : d(x,A) ≤ α, d(x,A′) ≤ α}.

Let G be a group of isometries of H and g ∈ G. Let ε and B be two positive real numbers, we say
that a subset A is (ε, B)-rigid if g(A) = A as soon as A ∩ε σ(A) > B. The set A is ε-rigid if there
exists B > 0 such that A is (ε, B)-rigid.

One more definition is in order. A hyperbolic isometry g ∈ G is called tight if



78 LECTURE 10. THE SIMPLICITY OF THE PLANE CREMONA GROUP

• g admits a 2θ-rigid axis Ax(g);

• for all g′ ∈ G, if g′(Ax(g)) = Ax(g) then g′gg′−1 = g or g−1.

Here θ = 4δ, it is chosen from approximation of finite subsets of H by trees. We are not going to
explain it.

Now, we can state the main result of [10].

Theorem 10.1. Let G be a group of isometries of H. Suppose g ∈ G is tight with (14θ,B)-rigid
axis Ax(g). Let n be a positive integer with

nL(g) ≥ 20(60θ + 2B).

Then any element h ∈ G \ {1} in the normal subgroup 〈〈g〉〉 ⊂ G is conjugate to gn unless it
is a hyperbolic isometry satisfying L(h) > nL(g). In particular, if n ≥ 2, the normal subgroup
〈〈gn〉〉 ⊂ G does not contain g.

Let us explain how this result allows one to prove the simplicity of Cr2(k). First let us see which
Cremona transformations correspond to hyperbolic isometries. Let Φ be a Cremona transforma-
tion given by polynomials of degree d which we denote by deg(Φ) (not to be confused with the
topological degree which is equal to 1). We define the dynamical degree of Φ to be

λ(Φ) := limn→∞ deg(Φn)1/n.

Since the composition of two Cremona transformations is defined by superposition of the corre-
sponding polynomials, we obtain deg(Φ ◦ Φ′) ≤ deg(Φ) deg(Φ′) (the equality happens only if we
superposed polynomials are mutually coprime, a rather rare occurrence).

Suppose Φ is realized by an automorphism of some basic rational surface X and hence acts on
N1(X), then the characteristic matrix of Φn is equal to An, where A is the characteristic matrix of
Φ. We know that the degree of Φ is equal to the first entry a11 of A. It is obvious that a11 is the
largest entry of the characteristic matrix. Thus, if we define the norm ||A|| of a matrix as the largest
absolute value of its entries, we obtain

||A ·B|| ≤ ||A||||B||,

that is ||A|| is a matrix norm. The Gelfand formula says that

lim
k→∞

||Ak||1/k = λ1,

where λ1 is the spectral radius of A, the largest of the absolute values of eigenvalues of A. Thus,
we obtain that the dynamical degree of Φ is equal to the spectral radius of the transformation of
Φ on N1(X). Note that since Φ∗ acts by an integral matrix, all eigenvalues of Φ∗ are algebraic
integers, in particular, the dynamical degree is an algebraic integer. This fact is true in the general
case, however the proof of this is rather technical (see [13]).

We have the following characterization of hyperbolic, parabolic or elliptic isometries defined by a
Cremona transformation.
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Proposition 10.2. Let Φ be a Cremona transformation of the plane and λ(Φ) be its dynamical
degree.Let σ = Φ∗ be the corresponding isometry of N1(P̃2). Then

• σ is hyperbolic if λ(φ) > 1;

• σ is parabolic if λ(φ) = 1;

• σ is elliptic if λ(φ) = 0.

Moreover, Φ∗ is parabolic if and only if Φ preserves a pencil of rational or elliptic curves, the
two cases differ by the property that deg(fn) grows linearly in the former case and quadratically in
the latter case. Also, Φ∗ is elliptic if some power of Φ is realized as an element of the connected
component of the group of automorphisms of a rational surface.

It is clear that, if Φ is a regularizable Cremona transformation, then Φ∗ acts in the hyperbolic space
HN associated to N1(X)R and Φ is hyperbolic, parabolic, or elliptic if and only if the isometry is
hyperbolic, parabolic, or elliptic.

Let g be a automorphism of a rational surface X with dynamical degree > 1 (we will call it a
hyperbolic automorphism) and let g∗ be the corresponding hyperbolic isometry of Hn, n = ρ(X)−
1. The axis Ax(g∗) in H∞ is the image of the axis of g∗ in Hn. Let Vg be the corresponding plane
in N1(X)R that contains Ax(g∗). It is contained in a

Lemma 10.3. Let g be a hyperbolic automorphism of X . Assume that g∗ acts identically on the
orthogonal complement V ⊥g of Vg in N1(X)R and the action of Aut(X) on N1(X) is faithful. Let
h be an automorphism of X such that h∗ preserves Vg, then hgh−1 = g±1.

Proof. Since h∗ preserves Vg and O(Vg) ∼= O(1, 1) ∼= R o Z/2Z, we obtain that the restrictions
of g∗ and h∗ to Vg either commute or h∗ is an involution and h∗g∗(h∗)−1 = (g∗)−1 on Vg. Since
g∗ acts identically on V ⊥g , the same is true for the action of g and h on the whole space N1(X)R.
Since Aut(X) acts faithfully on N1(X)R, we obtain that the assertion of the lemma.

Lemma 10.4. Let h be a birational transformation of a rational surfaceX . Assume that Vg∩N1(X)
contains the class η of a hyperplane section of X in some projective embedding. Let m = η2 and
η̄ = η/

√
m. Suppose

cosh d(η̄, h∗(η̄)) = (η̄, h∗(η̄)) < 1 +
1

m
,

Then h ∈ Aut(X) and h∗(η) = η.

Proof. Consider the action h∗ on H∞ = N1(P̃ 2). We can write h∗(η̄) = η̄ + r + s, where
r ∈ N1(X)R and s ∈ N1(X)⊥. Intersecting both sides with η̄, we obtain

(η̄, h∗(η̄)) = 1 + (r, η̄) = 1 +
(r, η)√
m
.
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Note that r ∈ 1√
m
N1(X), thus (r,η)

m ∈ 1
mZ. Using the assumption of the lemma, we get that

(r, η) = 0. This shows that d(η̄, h∗(η̄)) = 0, hence η̄ = h∗(η̄) and, therefore η = h∗(η). A
birational automorphism preserving the class of a hyperplane section is an automorphism.

Finally, we can formulate a condition that allows to construct examples of proper normal subgroup
of the Cremona group.

Theorem 10.5. ?? Let g and be a hyperbolic automorphism of a rational surface X . Assume that
Vg contains the class η and g∗ is the identity on V ⊥g ∩ N1(X). Then Ax(g∗) is rigid. Assume, in
addition, that if h ∈ Aut(X) leaves Ax(g∗) invariant then hgh−1 = g±1. Then any birational
automorphism of X is an automorphism of X and g∗ is a tight element of the image of Cr2(k) in
the group of isometries of H∞. Thus some power of g generates a proper normal subgroup of the
Cremona group.

Proof. We keep the notation from the previous lemma. Assume that Ax(g∗) is not rigid. Then there
exists a birational transformation f of X such d(η̄, g∗(η̄) and d(η̄, f∗(η̄) are bounded by 1

m , and,
moreover, f∗(Ax(g∗)) 6= Ax(g∗). This follows from Proposition 3.3 from [10]. We omit its proof.
Applying the previous Lemma, we obtain that f is an automorphism of X fixing η and g∗(η). But
then it fixes the ends of the geodesic line Ax(g∗) and hence fixes Ax(g∗). This contradiction shows
that Ax(g∗) is rigid.

Assume now that a birational automorphism h of X leaves invariant Ax(g∗). Since the orbit of η
under the cyclic group (g∗) consists of ample divisor classes and they form a dense subset of Ax(g∗)
we see that h∗(η) intersects any effective divisor class positively. Hence h∗(η) is an ample class,
and hence h is an automorphism. The additional assumption implies that g∗ is a tight isometry and
we conclude by invoking Theorem 10.1.

Example 10.6. We takeX to be a general Coble surface. We use a geometric basis (e0, e1, . . . , e10)
on X arising from the blowing up X → P2 of 10 double points p1, . . . , p10 of an irreducible sextic
C. Consider the curves D1 (resp. D2) of degree 6 passing through the points p1, . . . , p10 with
double points at p1, . . . , p8 (resp. p1, . . . , p6, p9, p10). The divisors classes of these curves are

[D1] = 6e0 − 2(e1 + · · ·+ e8)− e9 − e10, [D2] = 6e0 − 2(e1 + · · ·+ e6 + e9 + e10)− e7 − e8.

We have D2
1 = D2 = 2, D1 · D2 = 4. Let M be the sublattice of N1(X) spanned by [D1], [D2].

Its quadratic form is defined by the matrix ( 2 4
4 2 ). Consider the isometry σ0 of M defined by the

matrix
(

4 −1
1 0

)
in the basis ([D1], [D2]). Its eigenvectors are 2±

√
3. So the spectral radius is λ1 =

2±
√

3 > 1. We have σ2
0 is defined by the matrix

(
15 4
4 −1

)
. The discriminant group of M is a finite

group (of order 12). Let σ2n
0 be an even power of σ0 that acts trivially on the discriminant group.

Then it extends to an isometry σ on N1(X) that acts identically on the orthogonal complement of
M . It also acts identically on N1(X) modulo 2N1(X) (i.e. 1

2(σ(v) − v) exists in N1(X)). It is
known that Aut(X)∗ for a general Coble surface is isomorphic to Aut(X) and contains the group
of such isometries (see a proof in [?]). Thus σ = g∗ for some automorphism of X . The dynamical
degree of g is equal to (2 +

√
3)2 = 4 + 2

√
3 > 1. Note that Vg contains an ample divisor class,
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any positive integral combination of D1 and D2 will do. It is obvious that any hyperbolic h leaving
Ax(g∗) invariant must commute with g∗ (because dimVg = 2, its action is determined uniquely
by its action on Ax(g)). Thus, applying lemma 10.3, we see that all conditions of Theorem ?? are
satisfied. Thus some power of g generates a proper normal subgroup of Cr2(k).

Example 10.7. Let E be an elliptic curve with complex multiplication by the ring o of Gaussian.
We know from Example 6.10 that the group SL2(Z[i]) acts on the abelian surface A = E × E. Let
ι ∈ Aut(E × E) be defined by (z1, z2) 7→ (iz1, iz2). One can show that the quotient of E × E by
the cyclic group generated by ι is a rational surface (it is the quotient of the Kummer surface of A
by an involution with no isolated fixed points). Obviously, the group PSL2(Z[i]) = SL2(Z[i])/iI2

acts on the quotient, and hence embeds in Cr2(C). Cantat and Lamy show that, for any element g
of PSL2(Z[i]) represented by a matrix with trace > 2, there exists some power of g that generates a
proper normal subgroup Cr2(C).

Finally note, that the existence of an element g whose power generates a proper normal subgroup is
a general phenomenon. Cantat and Lamy prove, for example, that a generat quadratic transformation
has such property.
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k-reflective lattice, 31

abelian surface, 24
automorphisms, 44
complex multiplications, 45
ring of endomorphisms, 44
simple, 44

abelian variety, 44
absolute, 11
action

totally discontinuous, 13
algebraic cohomology classes, 3
Apollonian group, 52
Apollonian sphere packing, 52
Apollonian Theorem, 54
automorphism group

of an algebraic variety, 19
axis, 79

basic rational surface, 23
Beauville-Bogomolov quadratic form, 5
Bianchi group, 45, 55
bielliptic surface, 24
birational automorphisms, 21
blow-up, 21, 37

exceptional curve, 21
blowing down, 21
blowing-down map, 37
blowing-up map, 37
Boyd-Maxwell polytope, 50
bubble space, 77

divisor, 77

canonical class, 20

Chern class, 20
Chow groups, 3
Coble surface, 73, 82
complete linear system, 21
convex subset, 16
Coxeter diagram, 30

level, 50
Coxeter diagrams

quasi-Lanner, 50
Coxeter matrix, 30
Coxeter polyhedron, 30
Cremona action, 74
Cremona group, 69
Cremona transformation, 69

base scheme, 69
characteristic matrix, 69
graph, 69
standard quadratic, 69
standard transformation in higher dimen-

sion, 75
critical exponent, 62
crystallographic root basis, 33

del Pezzo surface
of degree 6, 71

Descartes’s equation, 52
dihedral angle, 17
discrete group

geometrically finite, 18
discriminant group, 31
divergent hyperplanes, 17
divergent lines, 8
divisor class

effective, 21
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dynamical degree, 80

elliptic curve
complex multiplication, 45

Enriques surface, 24
exceptional divisor, 37

fractal dimension, 61
fractal set, 61
Fuchsian group, 45
fundamental domain, 17

Dirichlet, 17
polyhedral, 18

fundamental weight
real, 49

fundamental weights, 49

Gelfand formula, 80
geodesic

line, 8
segment, 8

geometric basis, 70
geometric genus, 4
Global Torelli Theorem, 41
Gram matrix, 17
group

of connected components, 19
group of automorphisms

large, 73

Halphen surface, 73
Harbourne surface, 73
Hard Lefschetz Theorem, 2
Hausdorff dimension, 61
Hodge decomposition, 1
Hodge Problem, 3
Hodge-Index Theorem, 1
horocircle, 14
horosphere, 14
hyperbolic automorphism, 81
hyperbolic space

conformal model, 8
group of motions, 13
Poincaré model, 8

projective model, 7
vector model, 8

infinitely near point, 21
integral structure, 1
inversion, 29
isometry, 13

tight, 79
translation length, 79

K3 surface, 5, 24
Kleinian group, 13
Kodaira dimension, 21

Lanner group, 32
lattice in a Lie group, 32
lattice polytope, 30

multiplier, 31
Lefschetz Theorem, 4
limit set, 13
Lorentzian vector space, 1

metric space, 78
δ-hyperbolic, 78
geodesic, 79

Milnor Theorem, 25
minimal model, 20
Minkowski vector space, 1
Moebius transformation, 13
motion, 13

elliptic, 13
hyperbolic, 13
parabolic, 13

Néron-Severi group, 4
nef class, 20
nodal roots, 42
Noether Formula, 24
Noether Theorem, 69
numerical equivalence classes, 4

Picard group, 3
Picard number, 4
Poincaré Duality, 2
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special, 75
unnodal, 74

polyhedron
convex, 17

primitive vector, 30
proper inverse transform, 23
pseudo-Euclidean vector space, 1
pseudo-isomorphism, 75

quadratic lattice, 1
E8, 25
U, 25

quadratic lattice I1,n, 32

reflection, 29
reflective lattice, 31
rigid subset, 79
root, 30

scale, 56
Segre-Hirzebruch surface, 22
signature

hyperbolic, 1
simple roots, 49
Soddy’s equation, 52
spectral radius, 80
sphere

center, 48
curvature, 48
touching another sphere, 48

sphere [sphere packing
cluster, 49

sphere packing, 48
Boyd-Maxwell, 49
integral, 56
maximal, 48
strict, 48

Standard Conjectures, 4
standard coordinates, 7

universal Coxeter group, 52

weights
real, 49
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