
PERSPECTIVES IN GEOMETRY LECTURES

These are notes, taken by Samuel Isaacson, on Tony Pantev’s 2010 “Perspectives
in Geometry” series at the University of Texas in Austin.

1. Basics in non-commutative Hodge theory

First, we need to clear up some terminology:
• nc (non-commutative) Hodge theory: this is Hodge theory on the cohomol-

ogy groups of “non-commutative manifolds” (or varieties).
• Non-abelian Hodge theory: This is Hodge theory on cohomology of mani-

folds with non-abelian coefficients.
We need to combine these eventually.

Non-commutative Hodge structures arise in mirror symmetry but can be applied
to symplectic topology.

Fact 1.1. The cohomology of a compact symplectic manifold is equipped with a nc
Hodge structure.

1.1. Hodge theory of compact Kähler manifolds. If X is compact Kähler,
then H•(X; C) carries extra structure called a Hodge structure. This structure
comes from the fact that we can compare different cohomology theories:

H•dR(X; C) =
ker
(
A•C(X) d−→ A•+1

C (X)
)

im
(
A•−1

C (X) d−→ A•C(X)
)

We also have
H•B(X; C) = the singular cohomology of X

and

H•Dol(X; C) =
ker
(
A•C(X) ∂−→ A•+1

C (X)
)

im
(
A•−1

C (X) ∂−→ A•C(X)
)

Then
HdR

∼= HB (de Rham’s theorem)
and

HDol
∼= HdR (follows from Hodge’s theorem and Kähler identities 2∆∂ = ∆d).

This construction uses a Kähler metric; however, the isomorphism does not depend
on this choice. Note that this isomorphism, as specified, is not unique; but we can
refine this statement.

Using these isomorphisms,we have

Hw
B(X; C)

∼= // Hw
dR(X; C) Hw

Dol(X; C)
∼=oo

Hw
B(X; Z)

OO

⊕
p+q=w Hp,q(X)

1
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(note Hp,q(X) ∼= Hq(X; ΩpX)).

Provisional definition 1.2. A pure Hodge structure of weight w is a triple

(V, VZ,
⊕

p+q=w

V p,q ∼= V )

where
(1) V is a complex vector space.
(2) VZ is a finitely generated abelian group mapping to a full lattice in V

(embedding on the free part).

Let’s ignore Z and work with Q-structures instead:

(V, VQ, V =
⊕

V p,q)

The condition we require is that for all p and q, V p,q = V q,p.

Remark 1.3. This is a great deal of information. If X is a compact Riemann surface,
then (

H1
dR(X; C),H1(X; Z),H1(X;C) = H1,0⊕H0,1

)
reconstructs X (this is called Torelli’s theorem).

We will slightly modify the above definitions.

Definition 1.4. A pure Hodge structure of weight w is a triple

(V, VQ, F
•V )

where F •V is a decreasing filtration of length w:

V = F 0V ⊇ F 1V ⊇ · · · ⊇ FwV ⊇ 0.

We demand that grpF grq
F
V = 0 unless p + q = w. Another way to state this

condition is that F and F are w-opposed.

Here, in the geometric setting, we want

F pV =
⊕
a≥p

Ha(X; Ωw−aX ) ∼=
⊕
a≥p

Hw−a,a .

Note that Hp,q = F p ∩ F q. The reason this is better (a filtration as opposed to a
direct sum decomposition) is that if we have a family of compact Kähler manifolds
f : X → S (here f is a holomorphic map) then we get a bundle of cohomologies

H w(X /S)→ S

with fiber
H w(X /S)s ∼= Hw

dR(Xs; C)
which is a holomorphic vector bundle. We also get complex subbundles H p,q(X /S)
and F pH (X /S). However, the former are not necessarily holomorphic as subbun-
dles, while the latter are holomorphic.

Definition 1.5. This filtration is called the Hodge filtration. If

(V, VQ, F
•V ) and (V ′, V ′Q, F

•V ′)

are two pure Hodge structures, then a map between them is a linear map f : V → V ′

so that f(VQ) ⊆ V ′Q and f(F pV ) = F pV ′ ∩ f(V ) (note this condition is stronger
than you might expect).
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We get a category HSQ whose objects are direct sums of Hodge structures of
various weights and whose maps are maps of Hodge structures.

Fact 1.6. HSQ is an abelian category.

To generalize the notion of a Hodge structure, we need to reformulate the data
of a filtration.

1.2. First reformulation of the notion of a Hodge structure. Our first re-
formulation is the following: we think about a filtration on a vector space in terms
of algebraic geometry. We have{

graded f.d. vector space
}
↔
{

representation of S1
}

↔
{

representation of C×
}

and {
filtered f.d. vector space

}
↔
{

finite rank vector bundle on A1
C equivariant for the action of C×

}
The second correspondence is given by the Rees module construction: (V, F •V )
produces a trivial bundle V ×A1

C coming with an action of C×. As an equivariant
bundle, it corresponds to the module

ξ(V, F •V ) =
∑

u−iF iV ⊆ V ⊗C[u, u−1]

of C[u]. This construction is called the Rees bundle. Here we have the following
identification of the fibers at 0 and 1:

ξ(V, F •V )1 = V

ξ(V, F •V )0 = grF V

This leads to the Hodge structure on non-abelian cohomology or on homotopy
types. If X is a compact Kähler manifold and T a k-truncated homotopy type (i.e.,
πi(T, x) = 0 if x ∈ T and i > k), then Hom(X,T ) has a Hodge filtration in the
sense of C×-equivariance over A1.

1.3. Second reformulation of the notion of a Hodge structure. Our second
reformulation involves recasting the data of a filtration into differential geometric
data. The idea here is to promote V to a holomorphic vector bundle V on A1

(namely, the trivial bundle) and promote F •V to a holomorphic connection ∇ on
V |A1\{0} whose flat sections give back F •V . This will be the same as what we had
before if the pole of ∇ is logarithmic, i.e, if ∇ = d+Adu

u .

2. Meromorphic connections and Stokes phenomena

Recall that yesterday, we spoke about pure Hodge structures and recast the
notion of filtration as geometric data. Today, we’d like to generalize this (in par-
ticular, we’d like to drop the logarithmic requirement). Our setup is the following:
we work on A1

C with coordinate u. We want to understand pairs (H,∇) where H
is an algebraic vector bundle over A1 and ∇ is a connection

H → H ⊗ Ω1
A1(∞ · {0})
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(so ∇ is a meromorphic connection). We want to classify such data up to gauge
equivalence. This really only depends on the germ near 0. So we make a replacement

(H,∇)↔ (H ,∇)

where H is a rank n free module over C{u} and

∇d/du : H →H ⊗C{u}[u−1]

satisfies the Leibniz rule. Here C{u} means “convergent power series in u.”

Definition 2.1. (H ,∇) has a regular singularity at 0 if we can find a basis so that

∇d/du =
d

du
+ u−1A0

where A0 ∈ Matn×n(C).

In general, if we choose a basis for H , then

∇d/du =
d

du
+ u−N

∑
i≥0

Aiu
i

where the latter term is denoted A(u). If G ∈ GLn(C{u}[u−1]), then

AG∇ = G−1AG+G−1dG

The Riemann-Hilbert correspondence is the following:

{(H ,∇) with regular singularities} ↔ {conjugacy classes of exp(2πiA0)}.
What if (H ,∇) does not have regular singularities? Here, the picture is compli-
cated.

2.1. Classification of irregular (H ,∇). We’ll follow the plan below:
(1) First, there is a formal classification (no convergence condition). This is a

theorem of Fuchs and Levelt-Turrittin.
(2) This is the actual classification; it is more recent and due to Malgrange-

Deligne (see also Wazow, Hukuhara).

2.1.1. Step 1. We classify (H ,∇) where

∇ : H →H ⊗C((u))

G ∈ GLn
(
C((u))

)
Here C((u)) denotes formal Laurent series in u.

Definition 2.2. A Puiseux tail is an expression of the form∑
λ∈Q
λ≤−1

cλu
λ

with only finitely many cλ 6= 0 and uλ is some branch of this power. These are
taken modulo equivalence: we say∑

λ

cλu
λ ∼

∑
λ

cλe
2πimλuλ

when m ∈ Z. Note that this is a well-defined polynomial on the positive real axis
and the expression is an analytic continuation. Every equivalence class under ∼
has finitely many representatives.
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If g is a Puiseux tail, then g gives rise to an E g = (H g,∇)—a connection with
an irregular singularity. The flat sections of this connection are the functions exp(g)
for all g ∈ g. More invariantly, we have a cover ρN : C → C sending t to tN = u.
Each g is a well-defined polynomial of t−1. Then there is a connection(

C{t}, d− dg
)
.

Now E g is the pushforward of this connection.

Theorem 2.3 (Levelt-Turrittin).{
category of differential modules over C((u))

}⊕
g

E g ⊗
{

category of modules with regular singularities
}

So for every (H ,∇), we can find a formal isomorphism

(H ,∇) ∼=
⊕
g
i

E g
i ⊗ (Ri,∇i)

where each Ri is a module with regular singularities.

2.1.2. Step 2. We need some extra data to reconstitute E g
i ⊗ (Ri,∇i) into a con-

vergent irregular connection. The extra data is the so-called Stokes filtration on
S = (H ,∇)|S1 labelled by some finite sets moving with a point on the circle.
More precisely, labeling is given by a local system Del of vector spaces on S1. For
every U ⊆ S1,

Γ(U,Del) =
{
ω

∣∣∣∣ ω =
( ∑
λ<−1
λ∈Q

cλu
λ

)
du

}

Here we choose branches of uλ in the sector of C given by U . The germs of sections
of Del are ordered: suppose ω′, ω′′ ∈ Del(U) and ϕ ∈ U . Then

ω′ − ω′′ = caua + {higher order terms}.

We say ω′ <ϕ ω′′ if and only if

<
(
cae

iϕ(a+1)

a+ 1

)
< 0.

For every ϕ ∈ S1 and ω ∈ Delϕ, define (S≤ω)ϕ ⊆ Sϕ where

(S≤ω)ϕ =
{
s ∈ Γ(reiϕ,H )∇

∣∣ se− R
ω has moderate growth when r → 0

}
.

This condition means
||e−

R
ωs||reiϕ ∼ O(rN )

where N > 0 is an integer.

Theorem 2.4 (Malgrange-Deligne).

{(H ,∇) connections with poles} ↔ {(S , {S≤ω}ω∈Del)}

is an equivalence of categories.
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There are special types of connections:

{all meromorphic connections}
⊇ {mero. connections without ramification}
⊇ {mero. connections of exponential type}
⊇ {mero. connections with regular singularities}

This corresponds to the chain of inclusions

E g ⊗ (R,∇) ⊇ E g ⊗ (R,∇) ⊇ E u ⊗ (R,∇) ⊇ (R,∇).

(in the second term, g ∈ C[u−1]).

3. Non-commutative Hodge structures

Yesterday, we classified all meromorphic finite rank connections in one variable.
This classification consisted of two parts:

(1) The formal classification: we have

(H ,∇) =
⊕

E g
i ⊗ (Ri,∇i).

Here, E g
i is a connection of the form d − dg, g =

∑
cau

a, a ∈ Q≤1, and
(Ri,∇i) is a connection with regular singularities.

(2) The actual classification:

(H ,∇)↔ (S , (S≤ω)ω∈Del)

Here S is the restriction of (H ,∇) to S1 and Sω is the Stokes filtration.

Definition 3.1. A pure nc Hodge structure is a triple (H,EB , iso) where

(1) H → A1 is an algebraic Z/2-graded vector bundle.
(2) EB is a Z/2-graded local system of Q-vector spaces on A1 \ {0}.
(3) iso is an isomorphism E ⊗ O → H|A1\{0}.

Note that iso gives a flat holomorphic connection

∇ : H|A1\{0} → H|A1\{0} ⊗ Ω1.

We require the following conditions:

(1) Filtration axiom: There is a frame for H near 0 ∈ A1 such that ∇ has at
most a second order pole in this frame, i.e.,

∇ = d+A(u)u−2du

(2) ∇ has at most a regular singularity at ∞.
(3) Q-structure axiom: The Stokes filtrations are compatible with EB , i.e.,

(EB ∩S≤ω)⊗C = S≤ω.

(4) Opposedness axiom: The rational structure SB = EB ∩ S gives a real
structure on S . This gives a complex conjugation map τ : S → S . Let
γ : P1 → P1 be the map u 7→ 1/u. Then H|{u||u|≤1} and γ∗H|{u||u|≥1}

glue along S1 via τ . This gives a holomorphic vector bundle Ĥ on P1. We
require that Ĥ is trivial.
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Remark 3.2. Suppose we have a pure rational Hodge structure of weight w, i.e.,

(V, VQ, F
•V )

Then it gives rise to a natural pure nc Hodge structure as follows: define

Tw/2 =
(

O, d− w

2
du

u

)
H = ξ(V, F •V )→ A1.

This is called the Tate Hodge structure. The Tate commutative Hodge structure is

Q(1) = (C, 2πiQ,C1,1)

Q(n) = Q(1)⊗n = (C,Cn,n, (2πi)n)

Then we take (
Tw/2 ⊗H,

(
d− w

2
du

u

)
⊗ idH + idTw/2 ⊗d

)
Denote the connection by ∇. It has a regular singularity with monodromy{

id if w/2 is even
− id if w/2 is odd

Moreover, ∇ preserves any rational structure on Hs, i.e., (Tw/2 ⊗H)Q.

This is a nc Hodge structure and it gives a functor

HSQ //

��

ncHSQ

(HSQ)/⊗Q(1) // (ncHSQ)reg

⊆

OO

This realizes commutative Hodge structures modulo Tate twists as a full subcate-
gory of ncHSQ.

Fact 3.3. The categories

ncHSQ ⊇ (ncHSQ)exp ⊇ (ncHSQ)reg

are abelian categories.

3.1. Historical remarks.
(1) This structure was first written down about 20 years ago by Cecotti and

Vafa (charges of superconformal field theories have nc Hodge structures)
(2) Kioji and Saito also studied this sort of data around the same time in

(“exponential systems in singularity theory”)
(3) See also Hertling (“TER structure”) and Sabbah (“pure twistor D-module”)

3.2. Examples.
(1) Let (X,ω) be a compact symplectic manifold. Suppose that dimRX = 2d.

Any time we have such a manifold, we get a “large volume limit family”
(X, log qω) indexed by q ∈ C. The 3-point genus 0 Gromov-Witten invari-
ants of (X,ω) give a deformation of the cup product on H•(X; C):

?q : H•(X; C)⊗2 → H•(X; C)⊗Cq
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where

Cq =
{ ∞∑
i=1

ciq
Ei

∣∣∣∣ ci ∈ C, Ei ∈ R, and Ei →∞
}
.

We assume that ?q is convergent near 0. (This is true if X is Kähler.) Now
set

H = H•(X; C)⊗C{u, q}

H 0 =
( ⊕
k≡d (mod 2)

Hk

)
⊗C{u, q}

H 1 =
( ⊕
k≡d+1 (mod 2)

Hk

)
⊗C{u, q}.

Define

∇ ∂
∂u

=
∂

∂u
+ u−2(KX ?q ·) + u−1Gr

∇ ∂
∂q

=
∂

∂q
− q−1u−1([ω] ?q ·)

where KX is the first Chern class of T∨X in any ω-adapted almost complex
structure and

Gr|Hk =
k − d

2
idHk .

What about EB? We can try

EB =
⊕
k

Hk(X; (2πi)kQ),

but this doesn’t work! Instead, we have the following proposal:⊕
k

Hk(X; 2πiQ)
(·)∧Γ̂(X)−−−−−−→

⊕
Hk(X; C)

Here Γ̂(X) is the Gamma class of X, defined by

Γ̂(X) =
d∏
i=1

Γ(1 + δi)

where Γ(·) is the Gamma function and δ1, . . . , δd are the Chern roots of TX .

4. nc Hodge structures on symplectic manifolds and
Landau-Ginzburg models

Last time, we described the following construction: given a symplectic manifold
(X,ω) compact of dimension 2d, there is a 1-parameter variation of nc Hodge
structures (potentially). We have a triplet ((H ,∇),EB , iso) where:

(1) H is a module over C{u, q}.
(2) ∇ is an explicit meromorphic connection depending on ?q (the quantum

product), the canonical bundle KX , and [ω].
(3) EB is a rational local system on A1 \ {0} given by

H•(X; Q)
(2πi)k/2−−−−−→ H•(X; C)

∧Γ̂(X)−−−−→ H•(X; C)



PERSPECTIVES IN GEOMETRY LECTURES 9

Conjecture 4.1. This data gives a pure nc Hodge structure of exponential type. If
X underlies a Calabi-Yau then this is a pure ordinary Hodge structure.

Some evidence for the conjecture is the following:

(1) The conjecture is true for X Calabi-Yau.
(2) The nc filtration axiom is always true. However, the exponential type is

not clear in general; it is true for toric Fano and for general Fano which are
complete intersections in toric varieties.

(3) The Q-structure axiom is true for toric Fano Deligne-Mumford stacks.
(4) The opposedness axiom is true for Calabi-Yau and true for toric Fano and

complete intersection Fano varieties for generic symplectic forms (Reichelt-
Sevenheck).

This Hodge structure lives on the A-side of mirror symmetry. What is the analogue
of this on the B-side? It turns out that the B-side analogue is a Hodge structure on
the cohomology of a “holomorphic Landau-Ginzburg model.” As far as geometric
data is concerned, this is just a pair

Y
w−→ C

where Y is a complex manifold and w is a holomorphic function.
Before we describe the nc Hodge structure on the cohomology of (Y,w), we need

a different interpretation of the data (H ,EB , iso). We can forget everything but
EB (the Betti data) or (H ,∇) (the de Rham data).

Theorem 4.2. Consider the category of triples (H ,EB , iso) satisfying the nc-
filtration (exp) axiom and the Q-structure (exp) axiom. This category is equivalent
to the category of triples ((H ,∇),FB , f) where:

(1) (H ,∇) still satisfies the (exp version of the) nc filtration axiom.
(2) FB ∈ Constr(A1,Q) such that RΓ(A1,FB) = 0.
(3) f : FB ⊗C→ DR(i∗ ̂(H ,∇)). is an isomorphism

where

(1) i is the map A1 \ {0} → A1.
(2) (−̂) is the Fourier transform for D-modules.
(3) DR is the de Rham complex of a D-module.

This gives a description of nc Hodge structures via gluing.

Theorem 4.3. Specifying a nc Hodge structure (H,EB , iso) of exponential type is
equivalent to specifying:

(1) (regular type) a finite set

S = {c1, . . . , ck} ⊂ A1

and a collection (Ri,EB,i, isoi) of nc Hodge structures which are regular.
(2) (gluing data) a base point c0 ∈ A1 and a collection of paths c0 → ci, i > 0

together with Q-linear isomorphisms

Tij : (EB,j)∞ → (EB,i)∞

Suppose now we have a holomorphic Landau-Ginzburg model Y w−→ C where Y
is quasi-projective and the critical locus of w is proper. Make S = {c1, . . . , ck} the
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set of critical values of w. Fix c0 ∈ A1 \ S and paths c0 → ci, i > 0 (actually, we
should thicken these into discs Di). Define

Ui = Hm(w−1(Di), w−1(c0); Q)

and set

U =
k⊕
i=1

Ui = Hm(Y,w−1(c0); Q)

Finally, let Tii : Ui → Ui be the monodromy along ∂Di. This gives FB : explicitly,

(FB)z = Hm(Y,w−1(z); Q),

and this has no global cohomology. The regular piece at ci is

H • = H•mod2
Zar (Yi, (Ω•Yi , ud+ dw))⊗C{u}

and we define H•dR((Yi, w),C) to be this module (here Yi = w−1(Di)). There is an
isomorphism

Φ : H•(Y,w−1(c0),Q)⊗C ∼−→ HdR(Y,w)

given by oscillating integrals.

4.1. Mirror symmetry. The “pedestrian statement” of Mirror Symmetry is that
a symplectic manifold (X,ω) is a mirror to a Landau-Ginzburg (Y,w) if the nc
Hodge structures for the two are isomorphic. All this is supposed to be a corollary
of Homological Mirror Symmetry. In fact, (X,ω) ill give rise to an A∞ category
of boundary theories (D-branes) and this is the Fukaya category Fuk(X,ω). On
the other hand, (Y,w) gives rise to an A∞-category Db(Y,w). What homological
mirror symmetry asserts is the following: if (X,ω) and (Y,w) are mirror, then
Fuk(X,ω) ∼= Db(Y,w) and ncHS(X,ω) ∼= ncHS(Y,w).

4.2. The main conjecture. The idea is that the primary object is a category
Fuk(X,ω) and we should be doing geometry with that category. Let’s make a
simplifying assumption.

Definition 4.4. (1) A differential Z/2-graded (dZ/2g) category is called affine
if it is of the form AMod where A is a dZ/2g algebra.

(2) A nc space is a dZ/2g graded category C which has all small limits and
colimits.

(3) An object E ∈ C is called perfect if HomC (E,−) commutes with colimits.
(4) A nc space C is smooth ifA ∈ Perf(A⊗AopMod) and compact if dimC H•(A) <
∞.

If X is a scheme (quasi-compact and quasi-separated over C) then D(Qcoh(X))
is a nc space; in fact it is an affine nc space and it is smooth (resp. compact) if
and only if X is smooth (resp. compact). If C is an affine nc space we can define
H•dR(C ) to be HP•(A) (this is a module over C((u)) and deforms naturally HH•(A))
and H•Dol(C ) = HH•(A).

Conjecture 4.5 (Main conjecture). H•dR(C ) and H•Dol(C ) fit into a pure nc Hodge
structure when C is smooth and compact.
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5. Mirror symmetry for Calabi-Yau threefolds and normal functions

A mirror pair of Calabi-Yau threefolds (CY3’s) is two one-parameter families.
A model family is a pair (X,ω) where X is a compact real 6-manifold and ω is a
(closed?) symplectic form that underlies a Ricci flat Kähler metric. This gives a
family (X, log qω), where q is a complex parameter (the form ω is complexified).
Finally, a B-model family is a holomorphic family X̂ → D of projective CY3’s over
the complex disc D (with coordinate q) so that

(1) X̂q is smooth for q 6= 0.
(2) X̂0 is a normal crossing.
(3) We have a global relative non-vanishing 3-form on X̂ .
(4) The monodromy T : H3(X̂q)→ H3(X̂q) is maximally quasi-unipotent, i.e.,

if d > 0 then (T d − id)3 = 0.
(5) We have a strong equivalence of the associated categories of D-branes, i.e.,

Fuk(X,ω) ∼= P(X ). Here P(X ) is the dg enhancement of the derived
category of coherent sheaves on X over Γ(OD); and Fuk(X,ω) is the Fukaya
category, which is a linear A∞ category over Γ(OD). This isomorphism is
required to be strong, i.e., it exchanges Calabi-Yau structures (both cate-
gories are Calabi-Yau A∞ categories).

We are supposed to think of Fuk(X,ω) as the category of topological A-branes and
P(X ) as the category of topological B-branes. The equivalence ought to identify
moduli of branes; this follows for moduli problems that are defined intrinsically. In
particular, homological mirror symmetry will give an iso between germs of moduli
a ∈ ob Fuk and b ∈ ob P(X ) as formal stacks. Unfortunately, in physics, moduli
spaces are always critical loci of potentials. What we have are spaces

BranesA,off-shell

wA

��

BranesB,off-shell

wB

��

C C

and crit(wA) = TopoA (which comes with a dg structure) is (weakly?) equivalent
to crit(wB) = TopoB .

Let’s first discuss the B-side, which is easier. Then P(X ) is the category of all
graded C∞ complex vector bundles equipped with an integrable (0, •) supercon-
nection. A typical object is (E,∇) with E =

⊕
i Ei and

∇ : E→ A0,•
X (E)

so that ∇ ∈ (EndC E ⊗ A0,•
X )1 satisfies the graded Leibniz rule with respect to ∂.

If

E1
d1 // E2

d2 // · · ·
dk−1

// Ek

is a complex of holomorphic vector bundles, then Ei is the underlying C∞ vector
bundle and ∇ is a deformation of d.Then

Branesoff-shell,B =
{

(E,∇)
∣∣∇: we no longer require ∇2 = 0

}
If hms(a) = (E,∇), ∇ integrable, then

Branesoff-shell,B = Γ(X , (End E⊗A0,•)1)
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and wB is holomorphic Chern-Simons:

wB(∇ + A) =
∫

Xq

tr(∇A ∧A +
2
3
A3) ∧ Ωq.

Remark 5.1. Both the deformation theory of (E,∇) inside P(X ) and the fact
that deformations are critical points of wB give derived structures on TopoB .

Recall that if X is a scheme, a dg structure on X is the following data:

RX = (RX,ORX)

where

(1) RX is a scheme and X ⊆ RX is a closed subscheme.
(2) O•RX is a sheaf of dg algebras onRX with quasi-coherent terms and coherent

cohomology (differential O-linear)
(3) H (ORX) = OX .

Here are some examples:

(1) Suppose M is a manifold and w : M → C is a map. Then X = crit(w) has
a natural derived structure as

RX = (M, (
•∧
TM , ydw))

(2) If L• is a Z≥0-graded L∞-algebra, we get

RX =
[
(Spec(SymL∨≥1[−1]), Q−)/ expL0)]

and

X = [MC(L)/ expL0].

6. Derived structures on the moduli of A-branes

The setup is the same as that of yesterday: we have a 6-dimensional symplec-
tic manifold (X,ω) underlying a compact Calabi-Yau threefold. We get a family
(X, log qω) parameterized by the punctured disc; this gives rise to the linear A∞
Fukaya category Fuk(X,ω) over Cq. We make the assumption that it is really linear
over Γ(D,OD) (where D is a small disc near 0 in the q-line).

Locally, the moduli problem we’re interested in solving is the following: we fix
an object a in Fuk(X,ω) and look at the germ of deformations of a: TopoA → D.
The issue is that TopoA is a formal stack but also has a dg structure, in fact it has
two natural ones:

(1) TopoA has a dg structure coming from the deformation theory of a as an
object of Fuk(X,ω)

(2) There is also a dg structure because TopoA is the critical locus crit(wA) of
a potential

wA : BranesA,off-shell → C.

Because of this, TopoA gets a dg structure from the Koszul complex.

In fact, these are the same.
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6.1. The construction of the Fukaya category. We will only address “re-
stricted Fukaya categories” (and only in a hand-waving manner). These are built
in stages:

(1) Construct a C-linear dg category F0 (the large volume limit).
(2) Deform F0 to a “weak” A∞ category F over Γ(OD).
(3) Complete F algebraically (i.e., “Karoubi close and pass to twisted com-

plexes”) to produce Fuk(X,ω).
For step 1, fix a collection of smooth pairwise transversal Lagrangians {Li}ki=1.

The union L1∪· · ·∪Lk will be the skeleton. Let ob F0 = {(Li,V) where V = (V,∇)
is a complex local system on Li. We then let

Hom
(
(Li,V), (Lj ,V′)

)
=

⊕
p∈LitLj

Hom(Vp,V′p).

if i 6= j. There are some subtle grading issues here, but no differential. On the
other hand,if i = j

Hom
(
(Li,V), (Lj ,V′)

)
= Γ(Li, (A•(Hom(V, V ′)), d∇,∇

′
)).

For step 2, we must deform everything by counting pseudo-holomorphic discs.
Note that our objects in F0, say support on Li, are really dg modules over (A•C(L), d,∩),
tr =

∫
L

. The disc instantons correct the products

m0
1 = d

m0
2 = ∧

m0
3 = 0
...

to get

mq
1 = m0

1 + q corrections

mq
2 = m0

2 + q corrections

mq
3 = m0

3 + q corrections
...

What are the q corrections? Fix a Lagrangian L. We consider the moduli space
Mn+1,L of

f : (D,x1, . . . , xn+1)→ X

where D = {|z| ≤ 1} ⊂ C, x1, . . . , xn+1 ∈ ∂D, f is pseudo-holomorphic when
restricted to the interior of D, and f(∂D) ⊆ L.

Remark 6.1. (1) Mn+1,L exist for generic almost complex structures.
(2) Mn+1,L is non-compact in general.
(3) Mn+1,L has corners in general.
(4) For dimX = 6 it has no corners.
(5) Mn+1,L modulo its boundary has a virtual fundamental class.
(6) dim Mn+1,L = n+ 1.

We have an evaluation map ev : Mn+1,L → L×(n+1) given by

(D,x1, . . . , xn+1, f) 7→ (f(x1), . . . , f(xn)).
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We get a chain
ev∗([Mn+1,L]vir) ⊆ L×(n+1)

and then a functional

A•C(L×(n+1))→ C given by α 7→
∫

evA(Mn+1,L)

α.

We rewrite as an operator

ϕ : A•C(L×n)→ A•C(L).

Note that Mn+1,L has connected components labelled by π2(X,L) (or more pre-
cisely, the set of connected components maps onto π2(X,L) with finite fibers). Note
we get one ϕη for each η ∈ π0(Mn+1,L) ∼ π2(X,L). For each map (D,x, f) we
have

∫
D
f∗ω depending only on the connected component of (D,x, f). We then

introduce the following definition:

mq
k = m0

k +
∑

η∈π0(Mk+1,L)

qaηϕη.

These mq
k give also a correction to the Chern-Simons functional: let

BranesA,off-shell = all complex (super-)connections on L⊗ Γ(OD)

At q = 0,
wA : BranesA,off-shell → C

is ordinary Chern-Simons:

(L,V),V = (V,∇0 +A) 7→
∫
L

(A ∧ dA+
2
3
A3)

At any q,
wA : BranesA,off-shell → C

is

(L,V),V = (V,∇0 +A) 7→
∑
k≥0

1
k + 1

∫
L

tr(mq
k(A, . . . , A) ∧A)

Now the objects in Fuk(X,ω) coming from a at large volume are critical points of
wA.

Now we want to say that the two derived structures are the same. We can
expand wA as a function of q (in fact, add also mq

−1, which is
∑
η # ev∗(M0,L)qaη ).

Assume we have a generic almost complex structure so that

M0,L = {D1, D2, . . . }

with sgnDi = ±1 and aDi → ∞ as i → ∞ and with the ∂Di disjoint. We then
have

wA(A) = CS(A) +
∑
i

sgn(Di)
∑
k

tr(Iki )
qkai

k2
.

where
tr(Iki ) =

∑
n

1
n+ 1

tr(mq
n(A, . . . , A) ·A)

Rewriting as an iterated integral on (S1)n+1, we find

tr(Iki ) = tr((monodromy of A on ∂Di)k)
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In particular, we take Ii = exp(
∫
∂Di

Ai) (up to some normalization). Computing
∂wA/∂A we get critical points

A ∈ ΓL2(L,EndV ⊗A1)

such that A is smooth on L \
⋃
i ∂Di and

FA =
∑
i

sgn(Di) log(1− qaiTAx,∂Di)δ∂Di

where TAx,∂Di is the holonomy of A based at x. In this way we get flat connections
on L \ (

⋃
iDi) with monodromy constrained so that

1− qaiTAδi = (TAσi)
sgnDi

where δi ∼ ∂Di and σi is the linking circle. In fact,

FukSuppL(X,ω) = Rep
Cπ1

(
L \

⋃
i ∂Di

)
⊗ Γ(OD)

〈1− qai δi = σsgnDi
i 〉

Theorem 6.2. Rep→ FukSuppL(X,ω) is étale.
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