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         M358K 
 
  THE LEAST SQUARES REGRESSION LINE and R2 

 
I. Recall from p. 136 that “the least squares regression line of y on x is the line that 
makes the sum of the squares of the vertical distances of the data points from the line as 
small as possible.” The book (which is not written for math majors) then just gives 
formulas for the coefficients of this line on p. 137. As math majors, you should know 
why these are the right coefficients, so here is a proof, with blanks for you to fill in. I 
intend to go through this in class, calling on students to fill in the missing items A, B, … 
 
Notation: The least squares line has equation y = a + bx. The data points are (x1,y1), ... ,  
(xn, yn). 
 A. Draw a picture showing the line, the ith data point (xi, yi), and the vertical 
distance di from (xi, yi) to the line y = ax + b. 
 
 B. Express di in terms of xi, yi, a, and b:  di  = _____________ 
 
 C. Use your answer to (B) to find an expression for the sum Q of the squares of 
the distances of the data points from the line:  
 
  Q =  ____________________________________ 
  
 We want to minimize Q.  
 

D. The independent variables in this expression for Q are ___________________ 
 
 We need the partials of Q with respect to these variables to be zero  
 

E. Why? ______________________________________________ 
 

So we have 
 
  (1) 0 = ∂Q/∂a  = -Σ2(yi - a - bxi) 
 
  (2) 0 = ∂Q/∂b  = -Σ2xi(yi - a - bxi) 
 
 Let’s work first  with (1). Dividing by -2 and distributing the sum gives 
 
  (3)  Σyi - Σa - Σbxi = 0. 
 
Now Σyi = n y  , Σa = na, and Σbxi = bΣxi = b(n x ), so (3) simplifies to 
 
  (4) n y -na - nb x . 
 
Canceling the n’s and solving for y  gives 
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  (5) y  = a + b x . 
 
This tells us two things: 
 
 a) The point ( x , y ) lies on the least squares regression line. 
 
 b) Once we find b, we can find a by a = y -b x . 
 
 
 Now we’ll work with (2). First divide by  -2 to get 
 
  (6) Σxi(yi - a - bxi) = 0. 
 
Solve (5) for a and substitute in (6): 
 
  (7) Σxi(yi - y + b x  - bxi) = 0. 
 
Regroup this to give 
 
  (8) Σxi(yi - y )  - b Σxi (xi - x ) = 0. 
 
Now solve for b: 
 
  (9) b = [ Σxi(yi - y )]/[ Σxi (xi - x )], 
 
which doesn’t look like the formula on p. 137 for b. Let’s look, however, at the book’s 
formula: 
 
  (10)  b = r(sy/sx).  (formula from book) 
 
Remembering the formula for r, namely, 
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Using the definition of sx (and canceling n-1’s) now gives us 
 
  (13)  b =  [ Σ(xi- x )(yi - y )]/[ Σ (xi - x )2],  (from book formula) 
 
which still isn’t the same as (9), but looks at least somewhat similar. We will show that it 
is in fact the same; statistics has lots of formulas that are somewhat like trig identities, so 
your answer may not look like “the answer in the back of the book” unless you do some 
algebra first. 
 What we will use is the fact that “the sum of the deviations from the mean is 
zero.” What this means is that  
 
  (14)  Σ(yi - y ) = Σyi - Σ y  = n y  - n y   (F. Why?___________________) 
 
     = 0. 
 Using (14) can make the numerator of (13) look like the numerator of (9): 
 
  (15)  Σ(xi- x )(yi - y ) =  Σxi(yi - y ) -  Σ x  (yi - y ) 
 
     = Σxi(yi - y ) -  x Σ(yi - y ) 
 
     = Σxi(yi - y )  by (14) 
 
 Similarly, using the x version of (14) we can make the denominator of (14) look 
like the denominator of (9). So the two formulas, (9) and (10), really say the same thing. 
 
Comment: The original equations (1) and (2) (rather, the equations once we divide by -2) 
have further uses. In the terminology of Section 2.4, yi  - ˆ y i   (= yi - a - bxi ) is called a 
residual. Since it is the residual corresponding to the ith data point  (xi, yi), we will call it 
the ith residual and denote it ei. Thus: 
 
  ei = yi  - ˆ y i   = yi - a - bxi. 
 
 Equation (1) cleaned up then says that 
 
  (16) Σei = 0. 
 
That is, the sum of the residuals is zero. 
 Equation (2) in cleaned up form (i.e., equation (6)) says 
 
  (17) Σxiei = 0. 
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(This can be thought of as saying that the sum of the residuals weighted by the x 
observations is zero.) 
 
 Using these, we also have  
 
  (18) Σ ˆ y i ei = Σ(a + bxi)ei  
 
    = aΣei + b Σxiei 
 
    = 0 (by (16) and (17)) 
 
(Thus the sum of the residuals weighted by the predicted values is zero.) 
 
II. The book also makes an assertion about the connection of r2 with regression that we 
will now prove.   
 

First, we need to find ˆ y , the mean of the predicted values. In fact, 
 
  (19) ˆ y  = (1/n)Σ 

! 

ˆ y i 
 
    =  (1/n)Σ (a + bxi)  
 
   =  (1/n)Σ a  + (1/n)(bΣxi)  
 
   =  a + b

! 

x   
 
   = 

! 

y  by (5). 
 
In other words, the y observations and their predicted values have the same mean! 
 
   Now use the formulas to re-express the least squares line: 
 
  

! 

ˆ y = a + bx 
      = (

! 

y  -b) + bx 
    = 

! 

y  + b(x - 

! 

x ),  
 
so  

ˆ y  -

! 

y  = b(x - 

! 

x ) 
= r(sy/sx)(x - 

! 

x ) 
 
Applying this to the data points, we have in particular that for each i, 
 

 

! 

ˆ y i - 

! 

y  = r(sy/sx)(xi - 

! 

x ). 
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Summing over i, dividing by n-1, and using (19), we get 
 

 var( ˆ y ) = 
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var(x)  = r2(sy)2 = r2var(y) 

 
So  
 (20) r2 = var( ˆ y )/var(y).  
 
Since r2 is at most 1, we see in particular that the variance of ˆ y  is at most the variance of 
y. We can think of ˆ y  as the part of y that can be explained by regression of y on x. Hence 
we can say that “r2 is the fraction of the variance of y that is explained by regression of y 
on x.” (This is not quite the same as the assertion on p. 141, but the two assertions are 
equivalent, since “the variation in y” refers to (n-1)var(y).) 
 
Comment: With a little more work it is possible to show something even stronger, 
namely: 
 
   (21) var(y) = var( ˆ y ) + var(e). 
 
In words: The variance of the observations is the sum of the variance of the predicted 
values and the variance of the residuals. When this is written out as summations (and 
multiplied by n-1 to get less messy expressions), it looks like a typographical error or 
arithmetic mistake: 
 
   (22) Σ[( ˆ y i  - y ) + ei ]2 = Σ ( ˆ y i  - y ) 2  + Σei 
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However, if you look at it another way, you might see that it is something like a 
Pythagorean Theorem. 
 
 Equation (21) says that there are two contributions to var(y):  the contribution 
var( ˆ y ) from the predicted values -- that is, from the regression along x -- and the 
contribution var(e) from the residuals. (This idea of “contributions to variance from 
different sources” occurs in some advanced topics in statistics, such as Analysis of 
Variance and Multivariate Analysis.) 


