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ANALYSIS OF BALANCED FACTORIAL DESIGNS 
 
Estimates of model parameters and contrasts can be obtained by the method of Least 
Squares. Additional constraints must be added to estimate non-estimable parameters.  

Example: The cell means are estimable with Least Squares estimates 

! 

y ijk• .  

  
From the cell-means model and one-way analysis of variance, we have the following: 

• The error sum of squares ssE is the sum of squared deviations from the fits 
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y ijk• . 

Example: For 3 factors, ssE = 
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• ssE has associated degrees of freedom n – v 
Example: For 3 factors, ssE has abcr – abc = abc(r-1) degrees of freedom. 

• The mean square error msE is ssE divided by its degrees of freedom. 
Example: For 3 factors, msE = ssE/ abc(r-1) degrees of freedom. 

• msE is an estimate for the variance σ2.  
• The standard error of the residuals 

! 

yijkt " y ijk•  is ssE/(n-1) 

 
Before doing inference, we should use the fits and residuals to check the model 
assumptions of independent, normal errors with constant variance. 
 
Example: Evaporation experiment 
The experimenters wanted to study the evaporation rate of water under different 
conditions. They varied three factors: 
  

Factor Levels 
A: Container 1: cup 

2: plate 
B: Salt concentration 1:  1 tsp salt per 100 cc water 

2: 3 tsp salt per 100 cc water 
C: Location 1: windowsill 

2: floor in closet 
 

 
After 48 hours in the location, the amount of water remaining in the container was 
measured. The response was amount evaporated (= 100 cc – amount remaining). 
Two observations were taken for each treatment combination. 
 
Look at the data thinking about estimating standard deviations of errors for treatment 
combinations. What do you notice that needs thought? 
 
Use the cell-means model to obtain residuals and test for equal variance. What requires 
thought? 
 
Compare standard deviations of residuals between levels of each factor: 
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Factor Level 1 Level 2 Estimated 
variance 
ratio 

A 0.518 0.327 2.5 
B 0.2673 0.551 4.25 
C 0.423 0.443 1.1 

  
Should we proceed to further model checks or not? 
 
Simulation: Ten samples of eight each from a normal distribution with mean 0, standard 
deviation 0.4.  
 Standard deviations of the samples:  
  0.458 0.303 0.386 0.240 0.306 0.386 0.422 0.311 0.319 0.594  
 These would give an “estimated ratio of max to min variance” of 6.13. 
 
So we will proceed, but with some caution. First, model checking plots: 
 
Standardized residuals versus levels of factors: 
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Does anything look problematical? If so, discuss. 
 
 
 
 
 
 



 3 

 
Versus fits: 
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 Any problems? 
 
Normal probability plot: 

 p-value:   0.451
A-Squared: 0.340

Anderson-Darling Normality Test

N of data: 16
Std Dev: 1
Average: 0
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 Any problems? 
 
Hypothesis Tests and Analysis of Variance Table: 
 
Submodels can be tested against larger models by F-tests, with F-statistic obtained as a 
ratio of mean squares. 
 
The error sum of squares of a model is the sum of the squared deviations from the fits 
from that model. 
 Example: For three factors, the error sum of squares for a model is 
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ˆ y  is the fit for the model. 

 

 Special case I: Since the fit for the complete model is 

! 

y ijk•, the error sum of 

squares for the complete model is ssE mentioned above. 
 
 Special case II: The total sum of squares is the error sum of squares for the model  
 yijkt = µ + εijkt 



 4 

Since the fit for this model is the overall mean, the total sum of squares can be described 
as the sum of the squared deviations from the overall mean. 
 Example: For 3 factors, sstot = 
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The total sum of squares has n-1 associated degrees of freedom, where n = total number 
of observations (e.g., abcr for 3 factors). 
 
The sum of squares for a main effect or interaction is the difference between the error 
sum of squares for the model excluding terms involving this effect or interaction from the 
full model and the full model.  

Example: For 3 factors, ssBC = ssE0-ssEa , where ssE0 is the error sum of squares 
for the model excluding terms for BC and ABC interactions and ssEa = ssE is the 
error sum of squares for the complete 3-way model. 

 
The degrees of freedom for a sum of squares for a main effect or interaction is the 
product of one less than the number of levels for each factor involved in the effect or 
interaction. 
 Examples:  Sum of squares for  Degrees of freedom  
    A    a-1 
    AB    (a-1)(b-1) 
    BC    (b-1)(c-1) 
    ABC    (a-1)(b-1)(c-1) 
 
The total sum of squares partitions into (is the sum of) the error sum of squares plus the 
sums of squares for all main effects and interactions in the model.  
 
The degrees of freedom add correspondingly. For example, for the complete 3-way 
model, this is just the algebraic identity 
  
(a-1)(b-1)(c-1) + (a-1)(b-1) + (a-1)(c -1) + (b-1)(c-1) + (a-1) + (b-1) + (c-1)+ abcr – abc  

= abcr – 1 
 
Note: If we are dealing with another model, the error sum of squares for that model will 
have a different number of degrees of freedom. The degrees of freedom for error are 
usually most easily found by subtracting the other degrees of freedom from the total 
degrees of freedom. 
 
The mean square for a main effect or interaction is the sum of squares for that 
effect/interaction divided by its degrees of freedom. 
 Example: msBC = ssBC/(b-1)(c-1) 
 
The F-statistic for a main effect or interaction is the mean square for the effect/interaction 
divided by the mean square error, with corresponding degrees of freedom in the 
numerator in denominator. 
 
Example: In the 3-way complete model, the null hypothesis for BC interaction is 
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 H0: [(βγ)ij - (βγ)iq] - [(βγ)sj - (βγ)sq] = 0 for all i ≠ s, j ≠ q  
  and an analogous condition on the αβγ terms  
 
The F-statistic for this test is F = msBC/msE, which has an F((b-1)(c-1), abc(r-1)) 
distribution if H0

 is true. 
 

Example: Evaporation data.  
 Check out degrees of freedom, etc. 
 Conclusions? (Take into account overall significance level.) 
 
Contrasts 
Contrasts are defined and estimated as in the cell means model. There are various labels 
that are given to certain types of contrasts; see p. 199 for details. Contrasts can also be 
defined relative to submodels, in which case parameters not present in the submodel are 
omitted from the contrast. The various methods for simultaneous confidence intervals 
still apply. There is a modification that can be used for finding simultaneous confidence 
intervals for contrasts in the levels of a single factor: Replace v by the number of levels 
of the factor in question, and replace r by the number of observations on each level of the 
factor of interest. (See p. 205 for an example.) 
 
Example: Suppose that in the evaporation experiment, the researchers were interested in 
comparing the levels of salt for all combinations of levels of the other two factors. Thus 
they were considering the 4 contrasts τi1k- τi2k. (What does a positive contrast mean in 
terms of the context of the experiment?)If they wanted simultaneous 98% confidence 
intervals, they might consider the following methods: 
1.  The Tukey method for all contrasts, giving msd 2.69 (from Minitab output) 
2. The Bonferroni method, which would give individual 99.5% confidence intervals. The 

msd for this method is t(16 – 8, .0025) 
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0.328 = 1.904. 

3. The Scheffe method, giving msd 
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0.328 = 3.35. 
 
Bonferroni is clearly the best in this situation. The estimates and resulting simultaneous 
98% confidence intervals are:  
 
  

i,k Estimate for τ i1k- τ i2k CI 
11 7.750 -7.500 =0.250 (-1.654, 2.154) 
12 7.750  - 8.250 = - 0.50 (-2.404, 1.404) 
21 17.750 - 16.500 = 1.25 (-0.625, 3.154) 
22 19.250 – 16.000 = 3.250 (1.346, 5.154) 
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Thus, at an overall 98% confidence level, if the model assumptions indeed fit, we see that 
the higher concentration solution evaporates at a rate that was statistically significantly 
lower only when the container was the saucer (high surface area) and the location was the 
closet (low air movement). 
  
 
  
 
 
 
 
  
 
  
 
     


