
1

ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL

The first thing we need to test for in two-way analysis of variance is whether there is
interaction. Since "no interaction" means that all of the lines in the interaction plot have
the same slopes, we can state the null hypothesis

H0
AB: There is no interaction

as
H0

AB: [(αβ)ij - (αβ)iq] - [(αβ)sj - (αβ)sq] = 0 for all i ≠ s, j ≠ q

The alternate hypothesis is then

Ha
AB: [(αβ)ij - (αβ)iq] - [(αβ)sj - (αβ)sq] ≠ 0 for at least one instance of i ≠ s, j ≠ q

For equal sample sizes we can test the null hypothesis in a manner similar to the test for
one-way analysis of variance: with an F-test testing the submodel (reduced model)
determined by H0

AB against the full model. We do this by comparing the sum of squares

for error ssE under the full model with the sum of squares for error ssEa
AB under the

reduced model. This difference
ssAB = ssEa

AB - ssE
is called the sum of squares for the interaction AB. We reject Ha

AB in favor of Ha
AB when

ssAB is large relative to ssE.

Recall that the full model states:
Y ijt = µ + αi + βj + (αβ)ij + εijt

Since this is equivalent to the cell-means model, which is a one-way model, we know that
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The usual types of algebraic manipulations show that ssE has the alternate formulas
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If Ha
AB is true, then averaging over s and q gives the equations

[(αβ)ij - (

€ 

αβ )i•] - [(

€ 

αβ )•j - (

€ 

αβ )••] = 0 for each i, j
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So under the reduced model,

(αβ)ij = (

€ 

αβ )i• + (

€ 

αβ )•j - (

€ 

αβ )••

so
Y ijt = µ + αi + βj + (

€ 

αβ )i• + (

€ 

αβ )•j - (

€ 

αβ )••+ εijt

= [µ - (

€ 

αβ )••] + [αi +(

€ 

αβ )i•]  + [βj + (

€ 

αβ )•j ] + εijt

= µ* + αi*+ βj *+ εijt

Thus the reduced model is of the form of the main effects model.

Estimates for the main effects model, assuming equal sample sizes:

Least squares may be used to find estimators of the parameters under the Main Effects
Model assumption

Y ijt = µ + αi + βj + εijt .

(See p. 161 of the text for more details.)

For equal sample sizes (i.e., balanced anova), the resulting normal equations are readily
solvable (with added constraints), yielding least squares estimator

(*)
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for E[Y ijt] = µ + αi + βj.

Note: 1. Recall that for the complete model, the least squares estimators were
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from which it follows that the least squares estimate for  µ + αi + βj is the same in both

models. However, in the complete model, E[Yijt] = µ + αi + βj.+ (αβ)ij, which is not the

same as E[Y ijt] for the main effects model unless (αβ)ij = 0.

2. For unequal sample sizes, the normal equations are much messier.

From (*), we see that for the main effects model,
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which by the usual types of algebraic manipulations can be re-expressed as
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Continuing with the test for interaction in the complete two-way model

Applying the above to the reduced model
Y ijt = µ* + αi*+ βj *+ εijt

in the test for interaction in the complete two-way model, we get (assuming equal sample
sizes)

ssEa
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which by the usual types of tricks can be re-expressed as
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Since the first term is just ssE for the full model, we have

ssAB = ssEa
AB - ssE
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which can be re-expressed as
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Using the remaining two model assumptions, that the εijt are independent random

variables and each εijt ~ N(0, σ2), it can be shown that for the corresponding random

variables SSAB and SSE, when H0
AB is true and sample sizes are equal,

i) SSAB/σ2 ~ χ2((a-1)(b-1))

ii) SSE/σ2 ~ χ2(n - ab)

iii) SSAB and SSE are independent.
Thus, when sample sizes are equal and H0

AB is true,

€ 

SSAB a b

SSE n ab
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MSAB

MSE
 ~ F((a-1)(b-1),n-ab)

So we can use msAB/msE as a test statistic, rejecting for large values.

Further analysis after testing for interaction
I. If we reject H0

AB, then it is usually inappropriate to test for main effects. Instead, it is

usually preferable to use the equivalent cell-means model to examine contrasts in the
treatment combinations.

II. If we do not reject H0
AB, then we are usually interested in main effects. These can be

tested within the complete model (and staying with this model is advisable rather than
switching to the inequivalent main-effects model.)

Testing main effects with the complete model (equal sample sizes)

We are now assuming that H0
AB is true. So the model can be stated as

Y ijt = µ* + αi*+ βj *+ εijt

where

µ* = µ - (

€ 

αβ )••

αi* =  αi +(

€ 

αβ )i•

 βj * = βj + (

€ 

αβ )•j

The hypothesis, "Factor A has no effect on the mean response," can be stated as

H0
A: α1* = α2* = … = αa*

We will again use an F test comparing the full model with the reduced model where all
αi* 's are equal. If sample sizes are equal, it can be shown that the least squares estimate

of E[Yijt] under this new reduced model (i.e, under H0
A) is
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y⋅⋅⋅ ,
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giving sum of squares for the reduced model

ssE0
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which by appropriate algebraic manipulations becomes
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so the sum of squares for treatment factor A is
ssA = ssE0

A - ssE

= br
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which resembles the formula for ssT used to test equality of effects in one-way analysis
of variance.

If SSA is the random variable corresponding to ssA, it can be shown that
when H0

A is true and sample sizes are equal,
i) SSA/σ2 ~ χ2(a-1)

ii) SSA and SSE are independent.
Thus, when sample sizes are equal and H0

AB is true,
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So we can use msA/msE as a test statistic, rejecting for large values.

Similarly, we can form the sum of squares for treatment factor B and obtain an F-test
based  on
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for
H0

B: β1 *= β1 *= … = βb *

against
Ha

B: β1 *= β1 *= … = βb *

Analysis of Variance Table
The statistics for the three tests are typically summarized in an Analysis of Variance

Table with one line each for A, B, AB, and "total sum of squares"
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sstot = ssA + ssB + ssAB + ssE

Note When sample sizes are unequal, the formulae for the sums of squares are more
complicated, and the corresponding random variables are not independent.

Example: Battery experiment


