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Summary from Last week:

The complete two-way model:
Y ijt = µ + αi + βj + (αβ)ij + εijt

To test for interaction:
H0

AB: There is no interaction
This can be restated as:

H0
AB: [(αβ)ij - (αβ)iq] - [(αβ)sj - (αβ)sq] = 0

for all i ≠ s, j ≠ q
or as

H0
AB: [(αβ)i+1,j+1 - (αβ)i+1,j] - [(αβ)i,j+1 - (αβ)ij] = 0

for all i = 1, … , a-1, j = 1, … , b-1

If H0
AB is true, then the full model reduces to:

Y ijt = µ* + αi*+ βj *+ εijt

where µ* = [µ - (

€ 

αβ )••]

 αi* =[αi +(

€ 

αβ )i•]

βj *  = [βj + (

€ 

αβ )•j ]

This has the form of a main effects model, but the parameters are different from those in
the complete model.

We can test H0
AB using the F-statisticmsAB/msE, where

msAB = ssAB/(a-1)(b-1), ssAB = ss E0
AB - ssE.

We obtained a formula for ssAB. This statistic has (a-1)(b-1) and n - ab degrees of
freedom.

Examples:

1. The battery experiment

2. The reaction time experiment (pp. 98, 148, 157 of textbook). The data are from a pilot

experiment to compare the effects of auditory and visual cues on speed of response. The
subject was presented with a "stimulus" by  computer, and their reaction time to press a
key was recorded. The subject was given either an auditory or a visual cue before the
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stimulus. The experimenters were interested in the effects on the subjects' reaction time
of the auditory and visual cues and also in the effect of different times between cue and
stimulus. The factor "cue stimulus" had two levels, "auditory" and "visual" (coded as 1
and 2, respectively). The factor "cue time" (time between cue and stimulus) had three
levels: 5, 10, and 15 seconds (coded as 1, 2, and 3, respectively). The response (reaction

time) was measured in seconds.

What next?
This depends on whether or not interaction is significant and on what the original
questions were in designing the experiment and on whether or not  the analyzer wishes to
engage in data-snooping and on the context of the experiment. We will spend a while
discussing this.
First, if the interaction is deemed not significant, then it is usually desirable to analyze the
main effects.

Note: The next section is a replacement of the section "Testing main effects with the

complete model" from the notes posted for Friday, March 4.

Testing the contribution of each factor in the complete model (equal sample sizes)

Note: We are still assuming equal sample sizes.

We wish to test whether or not the factor A is needed in the model. Since A is included in
two ways, via the αi's and also via the interaction terms (αβ)ij, we can frame this question

as a hypothesis test with null hypothesis
H0

A+AB: Every αi and every (αβ)ij = 0

and alternate hypothesis
Ha

A + AB: At least one of the αi''s or (αβ)ij 's is not zero.

We will again use an F test comparing the full model with the reduced model where all
H0

A+AB is true. If sample sizes are equal, it can be shown that the least squares estimate of
E[Y ijt] under this new reduced model (i.e, under H0

A+AB) is
 

€ 

yij ⋅  - 

€ 

yi⋅⋅ + 

€ 

y⋅⋅⋅ ,

giving sum of squares for the reduced model

ssE0
A+AB = 

€ 

tji

∑∑∑ (yijt - 

€ 

yij ⋅  + 

€ 

yi⋅⋅  - 

€ 

y⋅⋅⋅ )
2,

which by appropriate algebraic manipulations becomes
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ssE0
A+AB = 

€ 

tji

∑∑∑ (yijt - 

€ 

yij ⋅ )
2 - br

€ 

i

a

=
∑

1

(

€ 

yi⋅⋅  - 

€ 

y⋅⋅⋅ )
2

= ssE - br

€ 

i

a

=
∑

1

(

€ 

yi⋅⋅  - 

€ 

y⋅⋅⋅ )
2,

so the sum of squares for treatment factor A is
ssA = ssE0

A+AB - ssE

= br

€ 

i

a

=
∑

1

(

€ 

yi⋅⋅  - 

€ 

y⋅⋅⋅ )
2

= (1/br)

€ 

i

a

=
∑

1

(

€ 

yi⋅⋅)
2  - (

€ 

y⋅⋅⋅ )
2/abr,

which resembles the formula for ssT used to test equality of effects in one-way analysis

of variance.
If SSA is the random variable corresponding to ssA, it can be shown that

when H0
A+AB is true and sample sizes are equal,

i) SSA/σ2 ~ χ2(a-1)

ii) SSA and SSE are independent.
Thus, when sample sizes are equal and H0

A+AB is true,

€ 

SSA a

SSE n ab

( )
( )

−
−

1 2

2

σ
σ

 = 

€ 

MSA

MSE
 ~ F(a-1,n-ab)

So we can use msA/msE as a test statistic, rejecting for large values.

Note: Recall that if we assume that there is no interaction -- that is, that H0
AB is true, then

the complete model can be stated as
Y ijt = µ* + αi*+ βj *+ εijt

where
µ* = µ - (

€ 

αβ )••

αi* =  αi +(

€ 

αβ )i•

 βj * = βj + (

€ 

αβ )•j

The hypothesis, "Factor A has no effect on the mean response," can then be stated as
H0

A: α1* = α2* = … = αa*

If we form an F test for this hypothesis under this model (remembering that we are
assuming that there is no interaction), I'm pretty sure we get the same formulas as above,
but haven't gone through the details myself.

Similarly, we can form the sum of squares for treatment factor B and obtain an F-test
based  on
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€ 

SSB b

SSE n ab

( )
( )

−
−

1 2

2

σ
σ

 = 

€ 

MSB

MSE
 ~ F(b-1,n-ab)

for
H0

B+AB: Every βj  and every (αβ)ij = 0

against the alternate hypothesis
Ha

B + AB: At least one of the βj 's or (αβ)ij 's is not zero.

Analysis of Variance Table
For each of the three tests (for interaction, effect of A and effect of B), we have a
corresponding sum of squares, ssAB, ssA, and ssB. We also have the error sum of
squares, ssE. If add up the formulas for these three sums of squares and do appropriate
algebraic manipulations, we will get

ssA + aaB + ssAB + ssE = 

€ 

tji

∑∑∑ (yijt - 

€ 

y⋅⋅⋅ )
2.

This last sum of squares is called the total sum of squares, denoted ssT. It can be seen as
a measure of the total variability of the data without taking into account either A or B.
Similarly, ssE is a measure of the variability taking into account A, B and their
interaction; ssA is a measure of the variability taking B into account but not A, and ssB is
a measure of the variability taking A into account but not B.

The sums of squares and the additional information used in the tests for A, B and AB are
traditionally summarized in an Analysis of Variance Table with one line each for A, B,

AB, error, and "total sum of squares"
sstot = ssA + ssB + ssAB + ssE

Interpreting ANOVA tests
Interpretation requires thought -- we need to taking into account the purpose of the study,
the context, multiple comparisons, and whether or not we are willing to do data snooping.
Interpretation can sometimes be frustrating  -- for example, what if the test for interaction
is significant, but the test for one of the factors is not?

Examples: Battery and reaction time.

Note When sample sizes are unequal, the formulae for the sums of squares are more
complicated, and the corresponding random variables are not independent. More on this
later.


