
Notes for M 384E, Wednesday, January 19, 2005

This is an introductory course in Analysis of Variance and Design of Experiments.

I. QUESTIONS:

1. What is Analysis of Variance?
2. How is Analysis of Variance connected to Design of Experiments?

II. BRIEF ANSWERS:
1. Analysis of Variance (ANOVA) is a methodology that can be used for

statistical inference in a variety of situations generalizing the equal-variance two-sample
t-test.

2. The details of implementation of ANOVA depend on the design of the method
for collecting data -- typically, by an experiment. The design needs to take into account
the methods of analysis as well as the particulars of the context (the question of interest,
factors that may influence the variable of interest, and constrains such as time and

budget.)

III. REVIEW OF THE EQUAL VARIANCE TWO-SAMPLE T-TEST (focusing on the
model assumptions and why they are important.)

(There is another two-sample t-test that does not assume equal variance. However, the
equal variance test is the one we will be concerned with here.)

Be sure to review the handout Review of Basic Statistical Concepts if you are confused

about notation or basic concepts used below.

Statistical procedures typically have certain model assumptions. These are assumptions
about the distributions of random variables involved, or about how samples are chosen,
or about the type of relationship between the variable involved.  The essence of applying
statistics is to find a model that does all of the following:

1. Fits the real-word situation involved.
2. Leads to a valid method of statistical analysis.
3. Gives information relevant to the questions of interest.

In using statistics, always bear in mind the words of the statistician G.E. Box:

All models are wrong; some are useful.



This means that models never fit the real-world situation exactly, but we need to be sure
that they fit "well enough" and that they give relevant information.

Model Assumptions for the equal variance two-sample t- test:
1. x1, x2, … , xm and y1, y2, … yn are independent, random samples from random

variables X and Y.
2. X and Y are each normally distributed.
3. X and Y have the same variance (which is not known)

Denote the means of X and Y by µX and µY, respectively.

We wish to test the null hypothesisH0: µX = µY

against the two-sided alternative Ha: µX ≠ µY

Example: A large company is planning to purchase a large quantity of computer
packages designed to teach a new programming language. A consultant claims that the
two packages are equal in effectiveness. To test this claim, the company randomly selects
60 engineers and randomly assigns 30 to use the first package and 30 to use the second
package. Each engineer is given a standardized test of programming skill after
completing the training with the assigned package. The scores of the 30 engineers
assigned to the first package are x1, x2, … , xm; the scores of those assigned to the second
package are y1, y2, … yn. (In this example, n = m = 30.) The random variable X is "test
score of someone using the first package." The random variable Y is "test score of

someone using the second package". Since the engineers are randomly chosen and
randomly assigned to the package, assumption (1) is satisfied. Since the test, like most
standardized tests, is devised and scored to have a normal distribution of scores,
assumption (2) is reasonable. It is reasonable to assume that the variability in scores will
not depend on the package chosen, so assumption (3) seems reasonable (although perhaps
we might want to look the data to get an additional check on whether this assumption is
reasonable).

Outline of what the test involves and why it works (focusing on where the model
assumptions are needed):
(For more details, see Ross, Section 4.2 or Wackerly Section 10.8)

Denote the (unknown) variance of X and Y by σ2.



Notation: The notation X ~ N(µX, σ2) is sort for "the random variable X is normally

distributed with mean µX and variance σ2". Thus from our assumptions:

X ~ N(µX, σ2) and Y ~ N(µY, σ2)

From our sample y1, y2, … yn, we can calculate the sample mean 

€ 

y , which is our best

estimate of the mean µY. We could also calculate the sample mean for any random

sample of size n chosen from Y. This process ("take a random sample from Y and
calculate its sample mean") describes a new random variable, which we will call 

€ 

Y .
Thus, 

€ 

y  is the value of the random variable 

€ 

Y  obtained by picking our particular sample.

Since 

€ 

Y  is a random variable, it has a distribution (called a sampling distribution, since
the value of 

€ 

Y depends on the sample chosen) . Mathematical theory tells us that the
random variable 

€ 

Y  is normally distributed with mean µX and variance σ2/n: 

€ 

Y  ~ N(µY,

σ2/n)

This conclusion uses the facts that we have random samples and that Y ~ N(µY, σ2).

Similarly, 

€ 

X  ~ N(µX, σ2/m)

Our hypotheses can be restated in terms of the difference µX - µY:

H0: µX - µY = 0Ha: µX - µY ≠ 0

Thus we consider the difference 

€ 

x  - 

€ 

y  as an estimate of µX - µY. In the language of

random variables, 

€ 

X - 

€ 

Y is an estimator of µX - µY.

Since our samples from X and Y are independent, the random variables 

€ 

X and 

€ 

Y are also
independent. Mathematical theory tells us that:

1. The sum of independent normal random variables is normal (so we know
that

€ 

X - 

€ 

Y  is normal).
2. The mean (expected value) of the sum of random variables is the sum of the
means of the terms (so we know that the mean of 

€ 

X - 

€ 

Y is µX - µY).

3.  The variance of the sum or difference of independent random variables is the
sum of the variances of the terms (so we know that Var(

€ 

X ) + Var(

€ 

Y ) = σ2/m +

σ2/n).

Thus we have:

€ 

X - 

€ 

Y ~ N(µX - µY,  σ2/m + σ2/n).

Therefore
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 ~ N(0,1) (i.e., is standard normal).



If we knew σ2, this would give us a test statistic to do inference on µX - µY. But we don't

know σ2. We do, however, have two estimates of σ2: the two sample variances
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Consistently with our notation 
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y  and 
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Y  above, we will use capital letters to refer to the

underlying random variables (the estimators of σ2):

SX
2 = 

€ 

( )X X

m
i

i

m −
−=

∑
2

1 1
and SY

2 =

€ 

( )Y Y

n
i

i

n −
−=

∑
2

1 1

Which of these two estimators should we use? What seems better than picking one or the
other is taking their average. But since they are come from possibly different sized
samples, we use their weighted mean, yielding the pooled estimator
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So we consider the random variable T = 
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Mathematical theory (using the model assumptions) tells us that T has a t-distribution
with n + m -2 degrees of freedom. If H0 is true, then T is just
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Summarizing: If H0 is true, then the random value T = 

€ 

X Y

S
m n

−

+1 1
 has a t-distribution

with n + m - 2 degrees of freedom.  We can use fact to perform our hypothesis test:
Calculate the value t of T determined by our sample.  Calculate the corresponding p-

value:



p = the probability of obtaining a value of T (having a t-distribution with n + m +
2 degrees of freedom) with absolute value greater than or equal to |t|.

If p is sufficiently small, we choose to reject the null hypothesis in favor of the alternate.
Otherwise, we do not reject H0 -- the evidence is consistent with it.

Example: Continuing with the example of comparing the two packages for teaching a
new programming language, if we obtain sample mean 72.5 and sample standard
deviation 10.3 for the first method, and sample mean and standard deviation 70.1 and
11.8, respectively, for the second method, then the pooled sample variance is

s2 = [29(10.32) + 29(11.82)]/58 = 122.665,

so the pooled standard deviation is

s = √(122.665) = 11.075,

the pooled standard error (which is our estimate of the standard error of the random
variable 
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X - 
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Y ) is

se(
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and the t-statistic is
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 = 2.4/2.86 = .8392

The corresponding p-value (two-tailed, using a t-distribution with 58 degrees of freedom)
is 0.404825. This does not give us any evidence against the null hypothesis, so we have
not detected any significant difference between the two packages -- we have no reason,
based on the test scores, to choose one over the other.

We could also use the t-statistic to calculate a confidence interval for the difference µX -

µY in the sample means. Suppose we want a 90% confidence interval. For 58 degrees of

freedom, 90% of all values lie between - 1.67155 and + 1.67155. So for 90% of all
samples satisfying the model assumptions,

- 1.67155 < T < 1.67155.



In other words,

- 1.67155 < 
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 < 1.67155.

A bit of algebra manipulation shows that this is equivalent to

(
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X - 
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Y ) - 1.67155se(
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X - 
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Y ) < µX - µY < (
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X - 
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Y ) + 1.67155se(
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X - 
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Y ).

Evaluating this for our sample gives the endpoints

(72.5 - 70.1) ± 1.67155(2.86)

for the confidence interval, resulting in confidence interval ( -2.38, 7.18).

Note that we are not asserting that µX - µY lies in this interval. All we have done is use a

procedure that, for 90% of all pairs of simple random samples of sizes n, chosen
independently from the populations in question, will give an interval that does contain µX

- µY. Our sample could be one of the 10% yielding a confidence interval that does not

contain µX - µY.

Note also that the confidence interval contains zero. Thus our data are consistent with the
possibility that µX - µY = 0 -- in other words, that µX = µY. (Note that this is the same

conclusion we drew from the hypothesis test. )
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