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ESTIMATING PARAMETERS AND VARIANCE

Least Squares Estimates

Our model (in its various forms) involves various parameters: µ, σ, the µi's, and the τi's.

Our purpose in doing an experiment is to estimate or compare certain of these parameters
(and sometimes certain functions of these parameters) using our data.

 Our data are the values yit for the random variables Yit that we observe in our
experiment.  In other words:

The data obtained from treatment 1 (or level 1 or population 1) are y11, y12, … , 

€ 

y r1 1
;

the data obtained from treatment 2 (or level 1 or population 2) are y21, y22, … , 

€ 

y r2 2
;

and so on.

To estimate certain parameters or functions of them, we use the method of least squares.
We illustrate the idea for the means model:

Our model is Y it = µi + εit. We seek an estimate 

€ 

µ̂i for µi. We would like to find
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µ̂i's with the property that when we apply the estimated model to the data, the errors are

as small as possible. In other words, if our estimates are 
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µ̂i, we would like the "error

terms" (residuals) eit = yit - 
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µ̂i to be as small as possible. But we want them to be small

collectively.  So we might try to minimize their sum. But positives and negative will
cancel out, so this doesn't really seem like a very good idea. We might try to minimize
the sum of the absolute values of the errors. This is reasonable, but technically not very
easy. What does work pretty well is to minimize the sum of the squared errors: 
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which we can do by calculus.

Exercise: Do the calculus to find the least squares estimates 

€ 

µ̂i of the µi's.

Using least squares for the means model works out cleanly. However,  if we try least
squares with the effects model, we end up with the following v+1 equations ("normal
equations") in the estimates 

€ 

µ̂ and 

€ 

τ̂ i  for µ and the τi's, respectively:
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τ̂ i  = 0, i = 1, 2, … , v.

(The details of obtaining the equations will be a homework problem.)

If we add the last v equations, we get the first one. Thus we only have v independent
equations in the v + 1 unknowns 

€ 

µ̂,  
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τ̂1, … , 

€ 

τ̂ v-- so there are infinitely many solutions.

To get around this problem, it is customary to impose the constraint
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 = 0.

This gives us v + 1 equations in the v + 1 unknowns, and there is a unique solution to this
set of n + 1 solutions. The constraint is not unreasonable, since we are thinking of the 

€ 

τ̂ i 's

as measuring deviations around some common mean.

Comments:
1. Students who have had regression may wish to think about how the necessity of
imposing an additional constraint here is connected to the need to have only v - 1

indicator variables for a categorical variable with v categories in regression.

2.  Note that, even though the normal equations do not have a unique solution for 
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µ̂,  

€ 

τ̂1,

… , 

€ 

τ̂ v, the last v equations do give a unique solution for each 

€ 

µ̂ + 

€ 

τ̂ i  -- the same one

obtained for 

€ 

µ̂i by using least squares with the means model. Similarly, by subtracting

pairs of the last v equations, we can obtain unique solutions for the differences 
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τ̂ i  - 
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τ̂ j  --

that is, there are unique least squares estimators for the differences τi - τj (the pair-wise

differences in effects). The functions of the parameters µ, τ1, … , τv that do have unique

least squares estimates are called estimable functions.  You can read a little more about
them in Sections 3.4.1 and 3.4.4.

3. Functions of the parameters that have the form  
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= 0 are called

contrasts. For example, each difference of effects τi - τj is a contrast.  This is certainly a

quantity which is often of interest in and experiment. Other contrasts, such as differences
of averages, may be of interest as well in certain experiments.
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Example: An experimenter is trying to determine which type of non-rechargeable battery
is most economical. He tests five types and measures the lifetime per unit cost for a
sample of each. He also is interested in whether alkaline or heavy duty batteries are most
economical as a group. He has selected two types of heavy duty (groups 1 and 2) and
three types of alkaline batteries (groups 3, 4, and 5). So to study his second question, he
tests the difference in averages,  (τ1 + τ2)/2  - (τ3 + τ4 + τ5)/3. Note that this is a contrast,

since the coefficient sum is 1/2 + 1/2 - 1/3 - 1/3 - 1/3 = 0.

Exercise: Every contrast 
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 is a linear combination of the effect differences τi - τj and

is estimable, with least squares estimate 
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3. Since each Y it has the distribution of Yi and Yi ~ N(µi , σ2), it follows from standard

properties of expected values that E(
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Yi⋅ )  = µi. Since the Yit's are independent, it follows

from standard variance calculations and properties of normal random variables that 
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Yi⋅~

N(µi, σ2/ri).

Exercise: Go through the details of comment (3).  Also  verify that the least squares

estimator 
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of the contrast 
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Yi⋅ 's are independent.]

Variance Estimate

If we just consider a single treatment group, the data for that group give sample variance
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2 =  

€ 

Y Y

r

it i
t

r

i

i

−( )
−

⋅
=
∑ 2

1

1
 is an unbiased estimator for the

population variance σ2: E(Si
2) = σ2. (See Ross, Chapter 4 or Wackerly, Chapter 8 if you

are not familiar with this.)
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As in our discussion of the two-sample t-test, the average of the Si
2's will then also be an

unbiased estimator of σ2. To take into account different sample sizes we will take a

weighted average:

S2 ( or 
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Note that the denominator equals 
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Exercise: Check that S2 is an unbiased estimator of σ2 -- that is, check that E(S2) = σ2.

Note (using the definition of Si
2) that the numerator of S2 is 
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expression is called SSE -- the sum of squares for error or the error sum of squares. So
the estimator for variance is often written as

S2 = SSE/(n-v).
This expression is called MSE -- the mean square for error or error mean square.

The above are random variables. Their values calculated from the data are:
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-- also called the sum of squares for error or the error sum of squares

msE = ssE/(n-v)
-- also called the mean square for error or error mean square

s2 = msE -- the unbiased estimate of σ2 -- also denoted 

€ 

σ̂ 2.

Note:

• 
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y yit i−  is sometimes called the itth  residual, denoted 
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êit . So  ssE  = 
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• Many people use SSE and MSE for ssE and msE.
• This unbiased estimate of σ2 is sometimes called the within groups (or within

treatments) variation, since it calculates the sample variance within each group and
then averages these estimates.


