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MODEL AND ANALYSIS FOR RANDOMIZED COMPLETE BLOCK DESIGNS  
 
The randomized complete block design (RCBD) 
 v treatments (They could be treatment combinations.) 
 b blocks of v units, chosen so that units within a block are alike (or at least  

similar) and units in different blocks are substantially different. (Thus the 
total number of experimental units is n = bv.) 

The v experimental units within each block are randomly assigned to the v  
treatments. (So each treatment is assigned one unit per block.) 

 
 
Model:  

Yhi = µ + θh + τi+ εhi 
εhi ~ N(o,σ2) 
εhi’s independent 

where 
Yhi is the random variable representing the response for treatment i observed in 
block h, 
µ is a constant (which may be thought of as the overall mean – see below) 
θh is the (additive) effect of the hth block (h = 1, 2, … , b) 
τi is the (additive) effect of the ith treatment (i = 1, 2, … , v) 
εhi is the random error for the ith treatment in the hth block. 

(Why is there no subscript t for observation number?) 
 
Note:  

• This model formally looks just like a two-way main effects model – but you need 
to remember that there is just one factor plus one block; the randomization is just 
within each block. So we don’t have the conditions for a two-way analysis of 
variance. 

• Like the main-effects model, this is an additive model that does not provide for 
any interaction between block and treatment level – it assumes that treatments 
have the same effect in every block, and the only effect of the block is to shift the 
mean response up or down.  If interaction between block and factor is suspected, 
then either a transformation is needed to remove interaction before using this 
model, or a design with more than one observation per block-treatment 
combination must be used. (Trying to add an interaction term in the RCBD would 
create the same problem as is encountered in two-way ANOVA with one 
observation per cell: the degrees of freedom for the error is zero, so the method of 
analysis breaks down.) 

• This is an over-specified model; the additional constraints 
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are typically added, so that the treatment and block effects are thought of as 
deviations from the overall mean. 

• There is an alternate means model Yhi = µih + εhi, where µih = µ + θh + τi.  
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• Note that the ith treatment mean is µi = 
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# = 0, this gives  µi = µ + τi 

 
Estimating and Analysis:  
 
Least squares fits: Since the model is formally the same as the main-effects model, the 
process of finding least squares is the same as for the latter model, yielding estimates 
(with notation appropriately changed)   
 
 µ^ = 

! 

y ••
 

θh^ =  

! 

y h• " y ••
 

 τi^ = 

! 

y •i " y ••
 

yhi^ = µ^ + θh^ + τ^ =  
 = 

! 

y h• + y •i " y ••
 

 
Thus the error sum of squares for this model is 
 
 ssE =  
 
As with the two-way main effects model, msE = ssE/(b-1)(v-1) is an unbiased estimator 
of σ2. (Note that (b-1)(v-1) = bv – b – v + 1 = n – b – v + 1, since n = bv.) 
 
Model checking: Look especially for potential problems with the normality assumption, 
unequal error variance by block or treatment, and treatment-block interaction, which is 
suggested by a curvilinear pattern in the plot of residuals vs. fits. (Note that since there is 
one observation per block, treatment level combination, there is no way to check the 
equal variance assumption at that fine a level.) 
 
Hypothesis test and Analysis of Variance Table: We are interested in testing equality of 
treatment means. Thus we wish to test the null hypothesis 
 H0: µ1 = µ2 = … = µv 
against the alternate 
 Ha: µi ≠ µj for at least one pair i,j. 
 
Note: From the last remark above, we can restate the hypotheses as  

H0: τ1 = τ2 = … = τv = 0 
and 
 Ha: at least one τi ≠ 0. 
 
We can construct an F-test in the usual manner: We consider the submodel corresponding 
to the null hypothesis, namely 
 
 Yhi = µ + θh + εhi 
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This has least squares fits  
 
 (yhi^)0 = (

! 

y ••
) - (

! 

y h• " y ••
) = 

! 

y h•
 

 
and hence error sum of squares 
 
 ssE0 =  
 
The difference ssT = ssE0 – ssE is called the sum of squares for treatment. Our test 
statistic for H0 is 
 

 

! 

ssT v "1( )
ssE / b "1( ) v "1( )

. 

As usual, the numerator is denoted msT (with v-1 degrees of freedom) and the 
denominator msE (with (b-1)(v-1) degrees of freedom, as mentioned above. The test 
statistic has an F distribution with v-1 degrees of freedom in the numerator, (b-1)(v-1) in 
the denominator. 
 
Note:  

• The above test is the same as the F-test for the treatment factor we would get by 
two-way ANOVA considering treatment and block as two factors in a main 
effects model. Thus we can test our hypothesis by using a two-way ANOVA 
main-effects software routine. 

• We can define ssB and msB (using b-1 degrees of freedom), but we don’t get a 
legitimate F-test for the null hypothesis “No block effect,” since the conditions for 
proving that the would-be test statistic has an F-distribution are not met, because 
the blocks are chosen, not randomly assigned. 

• Nonetheless, the ratio msB/msE can be considered as an informal measure of the 
effect of the blocking factor – if the ratio is large, that suggests that the blocking 
“factor” has a large effect, and that the variance reduction obtained by blocking 
was probably helpful in by improving the precision in the comparison of 
treatment means. 

• The algebra works out to show that ssTot = ssB + ssT + ssE, and the degrees of 
freedom add accordingly. 

 
Contrasts: In the RCBD, all contrasts (with coefficient sum zero) in the treatment 
effects τi are estimable, and the techniques of Chapter 4 still apply, with the following 
observed: 

• The estimate of  τi is τi^ = 

! 

y •i " y ••
, but since in a contrast ∑ciτi,, we have ∑ci 

= 0, the estimate of the contrast is ∑ci

! 

y •i
 

• The number of replicates is equal to the number b of blocks 
• The error degrees of freedom are (b-1)(v-1). 
• The msE used is the one obtained by the block design analysis. 
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Example: A hardness testing machine operates by pressing a tip into a metal test 
“coupon.” The hardness of the coupon can be determined from the depth of the 
resulting depression. Four tip types are being tested to see if they produce 
significantly different readings. However, the coupons might differ slightly in their 
hardness (for example, if they are taken from ingots produced in different heats). 
Thus coupon is a nuisance factor, which can be treated as a blocking factor. Since 
coupons are large enough to test four tips on, a RCBD can be used, with one coupon 
as a block. Four blocks were used. Within each block (coupon) the order in which the 
four tips were tested was randomly determined. The results (readings on a certain 
hardness scale) are shown in the following table: 
  

 Test Coupon 
Type of Tip 1 2 3 4 
1 9.3 9.4 9.6 10.0 
2 9.4 9.3 9.8 9.9 
3 9.2 9.4 9.5 9.7 
4 9.7 9.6 10.0 10.2 

 
Comment: From the table, the type of design is not apparent – in particular, the table does 
not show the order in which the observations were made, hence does not show the 
randomization. However, data are often presented in such a table, for reasons of economy 
of space or whatever. 
 
We wish to test 

H0: All tips give the same mean reading 
against the alternative 
 Ha : At least two tips give different mean readings. 
 
Our pre-planned analysis will be to test this hypothesis at the .01 level, then if the 
hypothesis is rejected, to form confidence intervals for pairwise differences at a family 
rate of 99%, giving an overall confidence/significance level of 98%.  
 
We can run the data on Minitab under Balanced ANOVA in exactly the same way we 
would run a two-way main effects model. The output is: 
 

Analysis of Variance for hard     
 
Source      DF         SS         MS       F      P 
Coupon       3    0.82500    0.27500   30.94  0.000 
Tip          3    0.38500    0.12833   14.44  0.001 
Error        9    0.08000    0.00889 
Total       15    1.29000 

 
Note that degrees of freedom and sums of squares behave as expected. 
 
Before testing, we check the model.  
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The plots of standardized residuals vs blocks and factor levels show one moderate outlier 
for coupon 2, tip 3. However, the standardized residual value of 2.05 isn’t really that 
unusual with 16 observations. 
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There is also a suggestion of unequal variance by block. Calculating standard deviation 
by block gives smallest 0.625 (coupon 1) and largest 1.556 (Coupon 2). This seems 
problematical from the point of view of the rule of thumb for variance ratio, but as shown 
earlier by simulations, is actually consistent with equal variance for samples this small (4 
observations). (Note that large scatter of residuals for a single coupon could indicate that 
that the coupon is of non-uniform hardness. Here, the possible problem seems to be the 
possibility of one coupon with smaller variance, which seems less problematical then one 
with larger variance.) 
 The plot of standardized residuals vs. fits shows no apparent patterns to suggest 
either interaction between block and tip or a relationship between mean and variance. 
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The normal probability plot below seems consistent with normality of errors. 
 

p-value:   0.370
A-Squared: 0.375

Anderson-Darling Normality Test

N of data: 16
Std Dev: 1.00000
Average: -0.0000008
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Thus we proceed with inference:  

The p-value for our hypothesis test is 0.001, prompting us to reject the null 
hypothesis of no difference.  

We thus proceed to form confidence intervals for differences in effect of tip. 
(Note that a glance at the data suggests that tip 4 tends to give higher readings; we will 
see whether or not the confidence intervals suggest that this is more than just chance 
variability.) Note (see more below) that we cannot use Minitab’s option of obtaining the 
CI’s doing one-way analysis of variance – the msE is wrong. The Tukey msd is 

 

 msd =  wT

! 

msE
1

4
+
1

4

" 

# 
$ 

% 

& 
'  = [q(4, 9, 0.01)/

! 

2 ]

! 

0.00889
1

2

" 

# 
$ 
% 

& 
'    



 7 

  = (5.96/

! 

2 )(0.0667) = 0.281 
 
Using Descriptive Statistics, we calculate the estimates 

! 

y •i
 to be 9.575, 9.600, 9.450, and 

9.875, for i = 1, 2, 3, and 4, respectively. So the centers of the simultaneous 98% 
confidence intervals for the pairwise difference contrasts are:  
 

Contrast Center of CI 
τ1-τ2 9.575 – 9.600 =  -0.025 
τ1-τ3 9.575 – 9.450 = 0.125 
τ1-τ4 9.575 – 9.875 = -0. 300 
τ2-τ3 9.600 – 9.450 = 0.150 
τ2-τ4 9.600 – 9.875 = -0.275 
τ3-τ4 9.450 – 9.875 = - 0.425 

 
Comparing with the msd, we can see that we have the mean for tip 4 significantly 
different from the means for the other tips, but no significant differences between the 
means of the other three tips. This is what we suspected from the data. 
 
Note:  
1. Of course, in a real experiment, we would investigate Bonferroni and Scheffe methods 
to see if they might give smaller confidence intervals. 
2. In the Analysis of Variance table, we see that the msB (the mean square for the blocks 
--  coupons) is 0.27500, which is 30.94 times the msE of  0.00889. This suggests that 
indeed blocking helped get more precise estimates than would be obtained without it. To 
follow up on this idea, let us suppose that we had obtained the same data from a 
completely randomized design with the single factor “tip” and 4 replications for each 
level of tip. Running one-way ANOVA on the data, and also using Tukey’s method for 
the confidence intervals at family error rate 4%, gives output 

 
Analysis of Variance on hard     
Source     DF        SS        MS        F        p 
Tip         3    0.3850    0.1283     1.70    0.220 
Error      12    0.9050    0.0754 
Total      15    1.2900 
 
Tukey's pairwise comparisons 
 
    Family error rate = 0.0100 
Critical value = 5.50 
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Intervals for (column level mean) - (row level mean) 
 
               1         2         3 
 
     2   -0.7802 
          0.7302 
 
     3   -0.6302   -0.6052 
          0.8802    0.9052 
 
     4   -1.0552   -1.0302   -1.1802 
          0.4552    0.4802    0.3302 
 
 

Notice that we are not detecting any difference at all! The msE is 0.075, several times 
larger than the msE of 0.00889 obtained by blocking. This translates to a ratio of variance 
estimates of over 70. This supports the idea that blocking is a variance reduction 
technique and explains why block designs are so often used. 
 
3. Be sure to read Examples 10.4.1 and 10.4.2, and Section 10.5 for more examples of 
RCBD’s and their analysis. 

  
 

  
  
 
 
  


