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REVIEW OF BASIC STATISTICAL CONCEPTS   M 384E 
 
I am assuming that you are familiar with confidence intervals and some form of 
hypothesis testing.  However, these topics can be taught from more than one perspective, 
and there are some common misconceptions regarding them, so it is worthwhile to give a 
review that will also lay a firm foundation for further work in statistics. I also want to 
introduce some notation that I will use in the course. So please read these notes 
carefully! They may contain details, perspectives, cautions, notation, etc. that you have 
not encountered before.  I will, however, leave out some details that I assume you are 
familiar with -- such as the formulas for sample mean and sample standard deviation. 
 
In statistics, we are studying data that we obtain as a sample from some population. (For 
example, we might be studying the population of all UT students and take a sample of 
100 of those students.) The procedures in an introductory statistics course usually assume  
that our sample is a simple random sample. That means that the sample is chosen by a 
method that gives every sample of the same size an equal chance of being chosen. (For 
example, we might choose our 100 UT students by assigning numbers to each UT 
student, and use a random number generator to pick a random sample of 100 numbers; 
our sample would then consist of the 100 students  with those numbers.) 
 
Typically we are interested in a random variable defined on the population under 
consideration. (For example, we might be interested in the height of UT students.) 
Typically we are interested in some parameter associated with this random variable. (For 
example, we might be interested in the mean height of UT students.) We will illustrate 
with the example of mean as our parameter of interest. 
 
Notation: Let Y refer to the random variable. (e.g., height). Then  
• The population mean (also called the expected value or expectation) of y is denoted 

by either E(Y), or µ, or µY. 
• We use our sample to form the estimate 

! 

y  of E(Y).  
More generally: 
• We use the word parameter to refer to constants that have to do with the population. 

We will often refer to parameters using Greek letters (e.g., σ) 
• We use the word statistic (singular) to refer to something calculated from the sample. 

So 

! 

y  is a statistic. (However, not all statistics are estimates of parameters. In 
particular, we will deal with  test statistics, which are not estimates of parameters.) 

• Consistently with the textbook, I will try to use capital letters to refer to random 
variables.  

 
Models: Most statistical procedures are based on model assumptions -- that is, one or 
more assumptions about distributions, or how data is selected, or about relationships 
between our variables. We will see several types of models in this course. In order to use 
statistical inference or form confidence intervals for means, we need to have a model for 
our random variable.  In the present context, this means we assume that the random 
variable has a certain (type of) distribution. Just what model (distribution) we choose 
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depends in part on what we know about the random variable in question, including both 
theoretical considerations and available data. The choice of model is also usually 
influenced by information known about distributions -- we can deduce more from a 
distribution that has a lot known about it. In working with models (which we will do 
often in this course), always bear in mind the following quote from the statistician G.B.E. 
Box:  
  

 All models are wrong - but some models are useful. 
 
For our example of height, we will use a normal model -- that is, we proceed under the 
assumption that the height of UT students is normally distributed, with mean  µ and 
standard deviation σ. We will use the notation Y ~ N(µ, σ2) as shorthand for "Y is normal 
with mean  µ and standard deviation σ." 

The values of µ or σ are unknown; in fact, our aim is to try to use the data to say 
something about  µ.  

Note: If we are just considering students of one sex, both theory and empirical 
considerations indicate that a normal model should be a pretty good one; if we are 
considering both sexes, then data, theory, and common sense tell us that it isn't likely to 
be as good a choice as if we are just considering one sex. However, other theoretical 
considerations suggest that it probably isn't too bad. 
 
Sampling Distributions: Although we only have one sample in hand when we do 
statistics, our reasoning will depend on thinking about all possible simple random 
samples of the same size n. Each such sample has a sample mean. We thus have a new 
random variable 

! 

Y .  
Notes to clarify distinctions: 

1. We are using 

! 

Y  to refer to the random variable "sample mean" and 

! 

y to refer to 
the sample mean for our particular sample.  
2. The value of the random variable 

! 

Y  depends on the choice of sample, whereas 
in the example above, the value of the original random variable Y depends on the 
choice of student.  
3. We call 

! 

y  an estimate and the underlying random variable 

! 

Y  an estimator of 
µ. 

Since the value of 

! 

Y depends on the sample, the distribution of 

! 

Y  is called a sampling 
distribution.   
Mathematics (using our assumption that the distribution of Y is normal with mean µ and 
standard deviation σ) tells us that the distribution of 

! 

Y  is also normal with mean µ, but 

its standard deviation is

! 

"

n
. In shorthand notation: 

! 

Y  ~ N(µ, σ2/n). Consequently, 

! 

Y varies less than Y. (See the demo Distribution of Mean at 
http://www.kuleuven.ac.be/ucs/java/index.htm  under Basics  for an illustration of this. ) 
This makes 

! 

Y more useful than Y for estimating µ!  In fact, since

! 

Y  ~ N(µ, σ2/n), we 

know that 

! 

Y " µ

#
n

 is standard normal. If we knew σ, we could get a kind of margin of 
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error for 

! 

Y  as an estimate of µ. Since we don't know σ, it is natural to use the sample 

standard deviation s = 

! 

(yi " y )2

n "1i=1

n

#  to estimate σ. (Note the use of English letters to refer 

to the statistics, to distinguish them from the parameters, denoted by Greek letters.) 
However, since s, like 

! 

y , depends on the sample, we need to introduce the underlying 

random variable S = 

! 

(Y
i
"Y )2

n "1
i=1

n

#  and consider the random variable T =  

! 

Y "µ

S

n

 . This 

turns out to have a t-distribution with n-1 degrees of freedom. We refer to the value of T 

for our sample as the t-statistic t = 

! 

y "µ

se(y )
, where se(

! 

y ) = 

! 

s

n
 (the standard error of 

! 

y ).  

 
Confidence Intervals: If we are trying to estimate E(Y), we use a confidence interval to 
give us some sense of how good our estimate 

! 

y  might be. (Note the qualifications in this 
sentence. Qualifications are important in statistics!) For a 95% confidence interval, we 
reason as follows: From tables or software, we can find the value t0 of the t-statistic such 
that 2.5% of the area under the t-distribution (with n-1 degrees of freedom) lies to the 
right of t0. Then in the language of probability,  

 Pr( - t0 ≤ 

! 

Y " µ

se(Y )
 ≤ t0) = 0.95. 

Caution: In understanding this, it is important to remember that 

! 

Y  and T = 

! 

Y " µ

se(Y )
 are the 

random  variables, not µ. So this mathematical sentence should be interpreted as saying, 
 
 "The probability that a simple random sample of size n from the assumed 

distribution  will produce a sample mean 

! 

y  with - t0 ≤ 

! 

y "µ

se(y )
 ≤ t0 is 95%" 

 
With a little algebraic manipulation, we can see that this says the same thing as  
 
 Pr(

! 

Y - t0se(

! 

Y ) ≤  µ ≤ 

! 

Y + t0se(

! 

Y )) = 0.95. 
 
Bearing in mind the caution just mentioned, we can express this in words as, 
 
 "The probability that a simple random sample of size n from the assumed 
distribution will produce sample mean 

! 

y  with

! 

y - t0se(

! 

y ) ≤  µ ≤ 

! 

y + t0se(

! 

y ) is 95%." 
 
The resulting interval  ( 

! 

y - t0se(

! 

y ) , 

! 

y + t0se(

! 

y ) ) formed using the value of 

! 

y  obtained 
from the data on hand is called a 95% confidence interval for µ. The confidence interval 
can be described in words in either of the following two ways: 
 
 i) The interval has been produced by a procedure that for 95% of all simple 
random samples of size n from the assumed distribution results in an interval containing  
µ. 
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 ii) Either the confidence interval calculated from our sample contains  µ, or our 
sample is one of the 5% of "bad" simple random samples of size n for which the resulting 
confidence interval doesn't  contain µ. 
 
(Of course, we also have to bear in mind the possibility that our assumed model is not a 
good one, or that our sample really is not a simple random sample.) 
 
 
Hypothesis tests: We use a hypothesis test when we have some conjecture ("hypothesis") 
about the value of the parameter that we think might or might not be true. A hypothesis 
test is framed in terms of a null hypothesis, usually called H0 (or NH). For most of the 
types of hypothesis tests we will do, the null hypothesis will be of the form 
 
 Parameter = specific value. 
 
So in our example, where the parameter of interest is the mean, the null hypothesis would 
be stated as 
 
 H0 (or NH): µ = µ0. 

There are two frameworks for a hypothesis test. 

Framework I (In terms of p-values): If the null hypothesis is true (and still assuming a 
normal model), then as above, we know that the sampling distribution of the statistic  T = 

! 

Y "µ
0

se(Y )
  (called the test statistic) has the t-distribution with n-1 degrees of freedom.  We 

calculate this test statistic for our sample of data (call the result of the calculation ts), and 
then calculate the p-value, defined as the probability that a simple random sample of size 
n from our population would give a t-statistic at least as extreme as the one (ts) that we 
have calculated from the data, assuming the null hypothesis is true.   
To pin down just what we mean by "at least as extreme," we usually specify an alternate 
hypothesis Ha (or AH). Here we will just consider a two-sided alternate hypothesis: 
 
 Ha (or AH): µ ≠ µ0 
 
With this two-sided alternate hypothesis, the p-value is  p = Pr(|T| ≥ ts). 
 
The p-value is taken as a measure of the weight of evidence against H0. A small p means 
that it would be very unusual to obtain a test-statistic at least as extreme as ours if indeed 
the null hypothesis is true. Thus if we obtain a small p, then either we have an unusual 
sample, or the null hypothesis is false. (Or we don't have a simple random sample, or our 
model does not fit the context well.) We (somewhat subjectively, but based on what 
seems reasonable in the particular situation at hand) decide what value of p is small 
enough for us to consider that our sample provides reasonable doubt against the null 
hypothesis; if p is small enough to meet our criterion of reasonable doubt, then we say we 
reject the null hypothesis in favor of the alternate hypothesis.  
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Note:  
 1. A hypothesis test cannot prove a hypothesis. Therefore it is wrong to say, "the 
null hypothesis is false," or "the alternate hypothesis is true," or "the null hypothesis is 
true," or "the alternate hypothesis is false" on the basis of a hypothesis test. 
 2. Although is it arguably reasonable to say "we reject the null hypothesis" on the 
basis of a small p-value, there is not as sound an argument for saying "we accept the null 
hypothesis" on the basis of having a p-value that is not small enough to reject the null 
hypothesis.  To see this, imagine a situation where you are doing two hypothesis tests, 
with null hypotheses just a little different from each other, using the same sample. It is 
very plausible that you can get a large (e.g., around 0.5) p-value for both hypothesis tests, 
so you haven't really got evidence to favor one null hypothesis over the other. So if your 
p-value is not small enough for rejection, all you can legitimately say is that the data are 
consistent with the null hypothesis.  (This discussion assumes that by "accept" you mean 
that the data provide adequate evidence for the truth of the null hypothesis. If by "accept" 
you mean accept  µ0 as a good enough approximation to the true µ, then that's another 
matter -- but if that's what you are interested in, using a confidence interval would 
probably be more straightforward than a hypothesis test.) 
 
 3. The p-value is, roughly speaking, the probability of obtaining a sample at least 
as extreme as the sample at hand, given that the null hypothesis is true. What many 
people really would like (and sometimes misinterpret the p-value as saying) is the 
probability that the null hypothesis is true, given the data we have. Bayesian analysis 
aims to get at the latter conditional probability, and for that reason is more appealing than 
classical statistics to many people. However, Bayesian analysis doesn't quite give what 
we'd like either, and is also often more difficult to carry out than classical statistical tests. 
Increasingly, people are using both kinds of analysis. I encourage you to take advantage 
of any opportunity you can to study some Bayesian analysis. 
 
Framework II (In terms of rejection criteria): Many people set a criterion for determining 
what values of p will be small enough to reject the null hypothesis. The upper bound for p 
at which they will reject the null hypothesis is usually called α. Thus if you set α = 0.05 
(a very common choice), then you are saying that you will reject the null hypothesis 
whenever p < 0.05.. This means that if you took many, many simple random samples of 
size n from this population, you would expect to falsely reject the null hypothesis 5% of 
the time -- that is, you'd be wrong about 5% of the time. For this reason, α is called the 
type I error rate.  
 
Note:  

1. If you set a type I error rate α, then to be intellectually honest, you should do 
this before you calculate your p-value. Otherwise there is too much temptation to choose 
α based on what you would like to be true. In fact, it's a good idea to think about what p-
values you are willing to accept as good evidence before the fact -- but if you are using p-
values, you may think in terms of ranges of p-values that indicate "strong evidence," 
"moderate evidence," and "slight evidence," rather than just a reject/don't reject cut-off.  
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2. If you do set a type I error rate α, then you don't really need to calculate p to do 
your hypothesis test -- you can just reject whenever the calculated test statistic ts is more 
extreme ("more extreme" being determined as above by your alternate hypothesis) than 
tα., where tα. is the value of the t-distribution that would give p-value equal to  α. 

3. If you are going to publish any scientific work, the second option is not a good 
choice; instead, you should calculate and publish the p-value, so others can decide if it 
satisfies their own criteria (which might be different from yours) for weight of evidence 
desired to reject the null hypothesis. 

4. When an α has been chosen for determining when the null hypothesis  will be 
rejected,  and when the null hypothesis  has indeed been rejected, many people say that 
the result of the hypothesis test is "statistically significant at the α level." It is important 
not to confuse "statistically significant" with "practically significant."  For example, the 
improvement on a skill after a training session may be statistically significant , but could 
still be so small as to be irrelevant for practical purposes. By taking a large enough 
sample, almost anything can be shown to be statistically significant. 

5.There is another variation of hypothesis testing. In this variation, you are trying 
to decide between two competing hypotheses, the null hypothesis H0: µ = µ0 and an 
alternate hypothesis Ha: µ = µa (still assuming we are testing means). Note that in this 
setting the alternate hypothesis specifies one value rather than being defined in terms of 
an inequality. Thus the null and alternate hypotheses  play symmetric roles in the initial 
formulation of the problem. In this setting, you will either accept H0 (and reject Ha ) or 
accept Ha (and reject H0). You determine a rejection region. For values of the test statistic 
in the rejection region, you will reject the null hypothesis and accept the alternate 
hypothesis; otherwise you will accept the null hypothesis and reject the alternate 
hypothesis.  In determining the rejection region, you take into account  both the type I 
error rate α  and the type II error rate ( the probability of accepting H0 when Ha is true). 
Hypothesis tests of this sort are appropriate for situations such as industrial sampling. The 
costs of errors one way or the other as well as the costs of sampling are taken into 
account in determining the rejection region and the sample size. We will discuss the 
related concept of power from a slightly different perspective in Section 3.6.2 
 
Important advice: Statistics gives many tools for obtaining information from data. 
However, it doesn't tell us "the answers." We need to combine what statistics tells us with 
careful thinking, caution, and common sense.  
 
 
 
 
  
 
 


