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ESTIMATING PARAMETERS AND VARIANCE FO ONE-WAY ANOVA 
(Corresponds approximately to Sections 3.4.1 – 3.4.5) 
 
Least Squares Estimates 
 
Our model (in its various forms) involves various parameters: µ, σ, the µi's, and the τi's.  
Our purpose in doing an experiment is to estimate or compare certain of these parameters 
(and sometimes certain functions of these parameters) using our data. 
 
 Our data are the values yit for the random variables Yit that we observe in our 
experiment.  In other words: 
 
The data obtained from treatment 1 (or level 1 or population 1) are y11, y12, … , 

! 

y
1r1

; 
the data obtained from treatment 2 (or level 1 or population 2) are y21, y22, … , 

! 

y
2r2

; 
and so on. 
 
To estimate certain parameters or functions of them, we use the method of least squares. 
We illustrate the idea for the means model: 
 
 Our model is Yit = µi + εit. We seek an estimate 

! 

ˆ µ 
i
 for µi. We would like to find 

! 

ˆ µ 
i
's with the property that when we apply the estimated model to the data, the errors are 

as small as possible. In other words, if our estimates are 

! 

ˆ µ 
i
, we would like the "error 

terms" (residuals) eit = yit - 

! 

ˆ µ 
i
 to be as small as possible. (Be sure to distinguish between 

errors εit and residuals eit.) But we want them to be small collectively.  So we might try to 
minimize their sum. But positives and negative will cancel out, so this doesn't really seem 
like a very good idea. We might try to minimize the sum of the absolute values of the 
errors. This is reasonable, but technically not very easy. What does work pretty well is to 

minimize the sum of the squared errors: 

! 

e
it

2

i,t

" = 

! 

e
it

2

t=1

r

"
i=1

v

" . This amounts to minimizing the 

function 
  f(m1, m2, … , mv) = 

! 

(yit "mi)
2

i,t

# , 

which we can do by calculus. 
 
Exercise: Do the calculus to find the least squares estimates 

! 

ˆ µ 
i
 of the µi's. 

 
Using least squares for the means model works out cleanly. However,  if we try least 
squares with the effects model, we end up with the following v+1 equations ("normal 
equations") in the estimates 

! 

ˆ µ  and 

! 

ˆ " 
i
 for µ and the τi's, respectively:  

 

 y.. - n

! 

ˆ µ  - 

! 

r
i
ˆ " 
i

i=1

v

#  = 0  

 
 yi. - ri

! 

ˆ µ  - ri

! 

ˆ " 
i
 = 0, i = 1, 2, … , v. 



 2 

 
(The details of obtaining the equations might be a homework problem.)  
 
If we add the last v equations, we get the first one. Thus we only have v independent 
equations in the v + 1 unknowns 

! 

ˆ µ ,  

! 

ˆ " 
1
, … , 

! 

ˆ " 
v
-- so there are infinitely many solutions. 

To get around this problem, it is customary to impose the constraint 
 

 

! 

ˆ " 
i

i=1

v

#  = 0. 

 
This gives us v + 1 equations in the v + 1 unknowns, and there is a unique solution to this 
set of n + 1 solutions. The constraint is not unreasonable, since we are thinking of the 

! 

ˆ " 
i
's 

as measuring deviations around some common mean. (Actually, this is only reasonable if 
the groups Gi are equally probably and exhaust all possibilities. If the groups are not 

equally probable, taking constraint 

! 

pi ˆ " i
i=1

v

# = 0, where pi is the probability of Gi, would be 

more reasonable; details of why are left to the interested student.) 
 
Comments: 
1. Students who have had regression may wish to think about how the necessity of 
imposing an additional constraint here is connected to the need to have only v - 1 
indicator variables for a categorical variable with v categories in regression. 
 
2.  Note that, even though the normal equations do not have a unique solution for 

! 

ˆ µ ,  

! 

ˆ " 
1
, 

… , 

! 

ˆ " 
v
, the last v equations do give a unique solution for each 

! 

ˆ µ  + 

! 

ˆ " 
i
 -- the same one 

obtained for 

! 

ˆ µ 
i
 by using least squares with the means model. Similarly, by subtracting 

pairs of the last v equations, we can obtain unique solutions for the differences 

! 

ˆ " 
i
 - 

! 

ˆ " j  -- 
that is, there are unique least squares estimators for the differences τi - τj (the pair-wise 
differences in effects). The functions of the parameters µ, τ1, … , τv that do have unique 
least squares estimates are called estimable functions.  You can read a little more about 
them in Sections 3.4.1 and 3.4.4. 
 

3. Functions of the parameters that have the form  

! 

c
i
"
i

i=1

v

#  where 

! 

c
i

i=1

v

" = 0 are called 

contrasts. For example, each difference of effects τi - τj is a contrast.  This is certainly a 
quantity that is often of interest in an experiment. Other contrasts, such as differences of 
averages, may be of interest as well in certain experiments. 
 
Example: An experimenter is trying to determine which type of non-rechargeable battery 
is most economical. He tests five types and measures the lifetime per unit cost for a 
sample of each. He also is interested in whether alkaline or heavy-duty batteries are most 
economical as a group. He has selected two types of heavy duty (groups 1 and 2) and 
three types of alkaline batteries (groups 3, 4, and 5). So to study his second question, he 
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tests the difference in averages,  (τ1 + τ2)/2  - (τ3 + τ4 + τ5)/3. Note that this is a contrast, 
since the coefficient sum is 1/2 + 1/2 - 1/3 - 1/3 - 1/3 = 0. 
 
Similarly, it can be shown that every difference of averages is a contrast. 
 

Exercise: Every contrast 

! 

c
i
"
i

i=1

v

#  is a linear combination of the effect differences τi - τj and 

is estimable, with least squares estimate 

! 

c
i
ˆ " 
i

i=1

v

#  = 

! 

ciy i•
i=1

v

"  

 
4. Since each Yit has the distribution of Yi and Yi ~ N(µi , σ2), it follows from standard 
properties of expected values that E(

! 

Y
i•
)  = µi. Since the Yit's are independent, it follows 

from standard variance calculations and properties of normal random variables that 

! 

Y 
i• ~ 

N(µi, σ2/ri). 
 
Exercise: Go through the details of comment (4).  Also verify that the least squares 

estimator 

! 

c
i
Y 

i•

i=1

v

" of the contrast 

! 

c
i
"
i

i=1

v

#  (where 

! 

c
i

i=1

v

"  = 0) has normal distribution with 

mean 

! 

c
i
"
i

i=1

v

#  and variance 

! 

c
i

2

r
i

"
2

i=1

v

# . [Hint: You need to establish and use the fact that the 

! 

Y 
i•'s are independent.] 

 
Variance Estimate 
 
If we just consider a single treatment group, the data for that group give sample variance 
 

  si
2 = 

! 

yit " y i•( )
2

t=1

ri

#

ri "1
. 

The corresponding random variable Si
2 =  

! 

Y
it
"Y 

i•( )
2

t=1

r
i

#

r
i
"1

 is an unbiased estimator for the 

population variance σ2: E(Si
2) = σ2. (See Ross, Chapter 4 or Wackerly, Chapter 8 if you 

are not familiar with this.) 
 
As in our discussion of the two-sample t-test, the average of the Si

2's will then also be an 
unbiased estimator of σ2. To take into account different sample sizes we will take a 
weighted average: 
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 S2 ( or 

! 

ˆ " 
2) = 

! 

r
i
"1( )Si

2

i

#

r
i
"1( )

i

#
 

 
Note that the denominator equals 

! 

r
i
"

i

# 1

i

#  = n - v.  

 
Exercise: Check that S2 is an unbiased estimator of σ2 -- that is, check that E(S2) = σ2. 
 

Note (using the definition of Si
2) that the numerator of S2 is 

! 

Y
it
"Y 

i•( )
2

t= 0

r
i

#
i=1

v

# . This 

expression is called SSE -- the sum of squares for error or the error sum of squares. So 
the estimator for variance is often written as 
  S2 = SSE/(n-v). 
This expression is called MSE -- the mean square for error or error mean square.  
 
The above are random variables. Their values calculated from the data are: 
 

 ssE = 

! 

yit " y i•( )
2

t= 0

ri

#
i=1

v

#   

-- also called the sum of squares for error or the error sum of squares 
 
 msE = ssE/(n-v) 
  -- also called the mean square for error or error mean square 
 
 s2 = msE -- the unbiased estimate of σ2 -- also denoted 

! 

ˆ " 
2. 

 
Note:  

• 

! 

yit " y i• is sometimes called the itth  residual, denoted 

! 

ˆ e 
it
. So  ssE  = 

! 

ˆ e 
it

2

t= 0

r
i

"
i=1

v

"  

• Many people use SSE and MSE for ssE and msE. 
• This unbiased estimate of σ2 is sometimes called the within groups (or within 

treatments) variation, since it calculates the sample variance within each group and 
then averages these estimates. 

• Exercise (might be homework): ssE = 

! 

yit

2

t=1

ri

"
i=1

v

" # ri

i=1

v

" y i•
2  


