INFERENCE FOR ONE-WAY ANOVA

To test equality of means for different treatments/levels, we can use the null hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_v$

Rephrase:

- 1. In terms of effects: ___
- 2. In terms of differences of effects:
- 3. In terms of contrasts τ_i $\bar{\tau}$, where $\bar{\tau} = \frac{1}{v} \sum_{i=1}^{v} \tau_i$:

The treatment degrees of freedom is the minimum number of equations needed to state the null hypothesis, in other words ______.

Alternate hypothesis: H_a: ______

Idea of the test: Compare ssE under the *full* model (with all parameters) with the error sum of squares ssE_0 under the reduced model -- i.e., the one assuming H_0 is true.

To calculate ssE_0 : If H_0 is true, let τ be the common value of the τ_i 's. Then the reduced model is

- $Y_{it} = \mu + \tau + \varepsilon_{it}^{0}$ $\varepsilon_{it}^{0} \sim N(0, \sigma^{2})$ the ε_{it}^{0} 's are independent,

where ε_{it}^0 denotes the itth error in the reduced model.

To find ssE₀, we use least squares to minimize $g(m) = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_{it} - m)^2$:

$$g'(m) = \sum_{i=1}^{y} \sum_{t=1}^{r_i} 2(-1)(y_{it} - m) = 0,$$

which yields estimate \overline{y} .. for $\mu + \tau$ -- that is, the least squares estimate of $\mu + \tau$ is $(\mu + \tau)^{\wedge} = \overline{y}$... (By abuse of notation, we call this $\hat{\mu} + \hat{\tau}$). So

$$ssE_0 = \sum_{i=1}^{\nu} \sum_{t=1}^{r_i} (y_{it} - \overline{y}..)^2,$$

which can be shown (proof might be homework) to equal $\sum_{i=1}^{r} \sum_{i=1}^{r} y_{it}^2 - n(\overline{y}..)^2$

Note that ssE and ssE₀ can be considered as minimizing the same expression, but over different sets: ssE minimizes $\sum_{i=1}^{t} \sum_{t=1}^{r_i} (y_{it} - m - t_i)^2$ over the set of all v + 1-tuples

 $(m, t_1, t_2, ..., t_v)$, whereas ssE_0 can be considered as minimizing the same expression over the subset where all t_i 's are zero. Thus ssE_0 must be at least as large as ssE: $ssE_0 \ge ssE$.

However, if H_0 is true, then ssE and ssE_0 should be about the same. This suggests the idea of using the ratio (ssE_0 -ssE)/ssE as a test for the null hypothesis: If H_0 is true, this ratio should be small; so an ususually large ratio would be reason to reject the null hypothesis.

The difference ssE_0 -ssE is called the *sum of squares for treatment*, or *treatment sum of squares*, denoted ssT. Using the alternate expressions for ssE_0 and ssE, we have:

$$ssT = ssE_{0} - ssE = \sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{it}^{2} - n(\overline{y}..)^{2} - \left(\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{it}^{2} - \sum_{i=1}^{v} r_{i}(\overline{y}_{i\bullet})^{2}\right)$$

$$= \sum_{i=1}^{v} r_{i}(\overline{y}_{i\bullet})^{2} - n(\overline{y}..)^{2}$$

$$= \sum_{i=1}^{v} \frac{(y_{i\bullet})^{2}}{r_{i}} - \frac{(y_{i\bullet})^{2}}{n} \quad \text{(using definitions)}$$

$$= \sum_{i=1}^{v} r_{i}(\overline{y}_{i\bullet} - \overline{y}..)^{2} \quad \text{(possible homework)}$$

This last expression can be considered as a "between treatments" sum of squares --- we are comparing each treatment sample mean \overline{y}_{i} , with the grand (overall) mean \overline{y} . By

contrast, our denominator, $ssE = \sum_{i=1}^{v} \sum_{t=1}^{r_i} (y_{it} - \overline{y}_i)^2$ is a "within treatments" sum of squares:

it compares each value with the mean for the treatment group from which the value was obtained.

Using the model assumptions, it can be proved that:

- $ssE/\sigma^2 \sim \chi^2(n v)$
- If H_0 is true, $ssT/\sigma^2 \sim \chi^2(v-1)$
- If H₀ is true, then ssT and ssE are independent.

Thus, $\underline{if} H_0$ is true,

$$\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)} \sim F_{v-1,n-v}.$$

Now
$$\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)}$$
 simplifies to $\frac{ssT/(v-1)}{ssE/(n-v)}$, which we can calculate from our sample.

We originally wanted to test ssT/ssE, but $\frac{ssT/(v-1)}{ssE/(n-v)}$ is just a constant multiple of

ssT/ssE, so is good enough for our purposes: $\frac{ssT/(v-1)}{ssE/(n-v)}$ will be unusually large exactly

when ssT/ssE is unusually large. Thus, we can use an F test, with test statistic $\frac{ssT/(v-1)}{ssE/(n-v)}$, to test our hypothesis.

Note: We can look at ssT/(v-1) and ssE/(n-v) as we did in the equal-variance, two-sample t-test: ssE/(n-v) is a pooled estimate of the common variance σ^2 , and if H₀ is true, then ssT/(v - 1) can be regarded as an estimate of σ^2 .

Notation: ssT/(v-1) is called msT (mean square for treatment or treatment mean square and ssE/(n-v) is called msE (mean square for error or error mean square). So the test statistic is F = msT/msE.