## INFERENCE FOR ONE-WAY ANOVA

To test equality of means for different treatments/levels, we can use the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{v}}
$$

Rephrase:

1. In terms of effects: $\qquad$
2. In terms of differences of effects: $\qquad$
3. In terms of contrasts $\tau_{\mathrm{i}}-\bar{\tau}$, where $\bar{\tau}=\frac{1}{v} \sum_{i=1}^{v} \tau_{i}$ :

The treatment degrees of freedom is the minimum number of equations needed to state the null hypothesis, in other words $\qquad$ _.

Alternate hypothesis: $\mathrm{H}_{\mathrm{a}}$ : $\qquad$
Idea of the test: Compare ssE under the full model (with all parameters) with the error sum of squares $\operatorname{ssE}_{0}$ under the reduced model -- i.e., the one assuming $\mathrm{H}_{0}$ is true.

To calculate $\mathrm{ssE}_{0}$ : If $\mathrm{H}_{0}$ is true, let $\tau$ be the common value of the $\tau_{i}$ 's. Then the reduced model is

- $\mathrm{Y}_{\mathrm{it}}=\mu+\tau+\varepsilon_{i t}^{0}$
- $\varepsilon_{i t}^{0} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$
- the $\varepsilon_{i t}^{0}$ 's are independent,
where $\varepsilon_{i t}^{0}$ denotes the it ${ }^{\text {th }}$ error in the reduced model.
To find $\mathrm{ssE}_{0}$, we use least squares to minimize $\mathrm{g}(\mathrm{m})=\sum_{i=1}^{v} \sum_{t=1}^{r_{i}}\left(y_{i t}-m\right)^{2}$ :

$$
\mathrm{g}^{\prime}(\mathrm{m})=\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} 2(-1)\left(y_{i t}-m\right)=0
$$

which yields estimate $\bar{y}$.. for $\mu+\tau-$ that is, the least squares estimate of $\mu+\tau$ is $(\mu+\tau)^{\wedge}=\bar{y} .$. . (By abuse of notation, we call this $\left.\hat{\mu}+\hat{\tau}\right)$. So

$$
\mathrm{ssE}_{0}=\sum_{i=1}^{v} \sum_{t=1}^{r_{i}}\left(y_{i t}-\bar{y} . .\right)^{2}
$$

which can be shown (proof might be homework) to equal $\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{i t}^{2}-n(\bar{y} . .)^{2}$

Note that ssE and $\mathrm{ssE}_{0}$ can be considered as minimizing the same expression, but over different sets: ssE minimizes $\sum_{i=1}^{t} \sum_{t=1}^{r_{i}}\left(y_{i t}-m-t_{i}\right)^{2}$ over the set of all $\mathrm{v}+1$-tuples $\left(\mathrm{m}, \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{v}}\right.$ ), whereas $\mathrm{ssE}_{0}$ can be considered as minimizing the same expression over the subset where all $\mathrm{t}_{\mathrm{i}}$ 's are zero. Thus $\mathrm{ssE}_{0}$ must be at least as large as ssE : $\mathrm{ssE}_{0} \geq \mathrm{ssE}$.

However, if $\mathrm{H}_{0}$ is true, then ssE and $\mathrm{ssE}_{0}$ should be about the same. This suggests the idea of using the ratio ( $\mathrm{ssE}_{0}-\mathrm{ssE}$ )/ssE as a test for the null hypothesis: If $\mathrm{H}_{0}$ is true, this ratio should be small; so an ususually large ratio would be reason to reject the null hypothesis.

The difference $\mathrm{ssE}_{0}-\mathrm{ssE}$ is called the sum of squares for treatment, or treatment sum of squares, denoted ssT. Using the alternate expressions for $\mathrm{ssE}_{0}$ and ssE , we have:

$$
\begin{aligned}
\mathrm{ssT}=\mathrm{ssE}_{0}-\mathrm{ssE}= & \sum_{i=1}^{v} \sum_{i=1}^{r_{i}} y_{i t}^{2}-n(\bar{y} . .)^{2}-\left(\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{i t}^{2}-\sum_{i=1}^{v} r_{i}\left(\bar{y}_{i .}\right)^{2}\right) \\
& =\sum_{i=1}^{v} r_{i}\left(\bar{y}_{i \bullet}\right)^{2}-n(\bar{y} . .)^{2} \\
& =\sum_{i=1}^{v} \frac{\left(y_{i \cdot}\right)^{2}}{r_{i}}-\frac{(y . .)^{2}}{n} \quad \text { (using definitions) } \\
& =\sum_{i=1}^{v} r_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{. .}\right)^{2} \quad \text { (possible homework) }
\end{aligned}
$$

This last expression can be considered as a "between treatments" sum of squares --- we are comparing each treatment sample mean $\bar{y}_{i}$. with the grand (overall) mean $\bar{y}$.. By contrast, our denominator, $\mathrm{ssE}=\sum_{i=1}^{v} \sum_{t=1}^{r_{i}}\left(y_{i t}-\bar{y}_{i}\right)^{2}$ is a "within treatments" sum of squares: it compares each value with the mean for the treatment group from which the value was obtained.

Using the model assumptions, it can be proved that:

- $\quad \mathrm{ssE} / \sigma^{2} \sim \chi^{2}(\mathrm{n}-\mathrm{v})$
- If $\mathrm{H}_{0}$ is true, $\mathrm{ssT} / \sigma^{2} \sim \chi^{2}(\mathrm{v}-1)$
- If $\mathrm{H}_{0}$ is true, then ssT and ssE are independent.

Thus, if $\mathrm{H}_{0}$ is true,

$$
\frac{s s T / \sigma^{2}(v-1)}{s s E / \sigma^{2}(n-v)} \sim \mathrm{F}_{\mathrm{v}-1, \mathrm{n}-\mathrm{v}} .
$$

Now $\frac{s s T / \sigma^{2}(v-1)}{s s E / \sigma^{2}(n-v)}$ simplifies to $\frac{s s T /(v-1)}{s s E /(n-v)}$, which we can calculate from our sample. We originally wanted to test $\mathrm{ssT} / \mathrm{ssE}$, but $\frac{s s T /(v-1)}{s s E /(n-v)}$ is just a constant multiple of ssT/ssE, so is good enough for our purposes: $\frac{s s T /(v-1)}{s s E /(n-v)}$ will be unusually large exactly when ssT/ssE is unusually large. Thus, we can use an F test, with test statistic $\frac{s s T /(v-1)}{s s E /(n-v)}$, to test our hypothesis.

Note: We can look at $\mathrm{ssT} /(\mathrm{v}-1)$ and $\mathrm{ssE} /(\mathrm{n}-\mathrm{v})$ as we did in the equal-variance, twosample $t$-test: $s s E /(n-v)$ is a pooled estimate of the common variance $\sigma^{2}$, and if $H_{0}$ is true, then $\operatorname{ssT} /(v-1)$ can be regarded as an estimate of $\sigma^{2}$.

Notation: $\mathrm{ssT} /(\mathrm{v}-1)$ is called msT (mean square for treatment or treatment mean square and $\mathrm{ssE} /(\mathrm{n}-\mathrm{v})$ is called msE (mean square for error or error mean square). So the test statistic is $\mathrm{F}=\mathrm{msT} / \mathrm{msE}$.

