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MORE ON THE EQUAL-VARIANCE, TWO-SAMPLE T-TEST 
 
I. Robustness:  As pointed out in the quote from Box (in the notes for January 20), and 
as the discussion (when the example was introduced) of the example about comparing 
two computer packages suggests, we can't expect the assumptions of an inference 
procedure to apply exactly. A procedure is said to be robust to departures from a model 
assumption if the results are still reasonably accurate when the assumption is relaxed to 
some degree. Robustness is sometimes determined by theory, sometimes by computer 
simulations. For example, in the two-sample t-test above, if our samples are large 
enough, the Central Limit Theorem tells us that even if X and Y are not normally 
distributed, the distribution of 

! 

X - 

! 

Y  is approximately normal if the sample sizes are 
large enough, so that the test statistic will still have a distribution that is approximately t 
with m + n -2 degrees of freedom. Of course, just how large is large enough will depend 
on the distributions of X and Y. Computer simulations have shown that moderate 
departures of X and Y from normality have little effect on the distribution of the t-
statistic. Simulations have also shown that the equal-variance two-sample t-test is 
relatively robust to departures from the equal variance assumption, provided the two 
sample sizes are equal or nearly equal. However, lack of independence can cause serious 
problems -- the results of a t-test may be very misleading. 
 
II. Another perspective on the two-sample, equal-variance t-test. Those of you who 
have had regression have seen that a certain t-test is equivalent to a certain F-test. The 
same is true here. The F-test perspective then allows us to generalize the method to 
situations where we are comparing more than two means and to some sampling methods 
other than simple random samples. 
 
First we need more detail on t distributions: A t-distribution with k degrees of freedom is 

defined as the distribution of a random variable of the form 

! 

Z

U
k

 where 

• Z~N(0,1) 
• U~ χ2(k) (Chi-squared with k degrees of freedom.) 
• Z and U are independent. 
 
A chi-squared distribution with k degrees of freedom is defined as the distribution of a 
random variable that is a sum of squares of k independent, standard normal random 
variables. 
 
The proof that our test statistic T for the equal-variance, two-sample t-test has a t-
distribution follows from these facts: 
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• Z = 
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 is standard normal (seen earlier) 

• U = 
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#
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 is chi-squared with m + n -2 degrees of freedom. (Can be proved 

using model assumptions) 
• U and Z are independent (Can be proved using model assumptions.) 

 
 
An F-distribution F(ν1, ν2) with ν1 degrees of freedom in the numerator and  ν2 degrees 

of freedom in the denominator is the distribution of a random variable of the form 
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where   
• W ~ χ2(ν1) 
• U ~ χ2(ν2), and  
• U and W are independent. 

 

If we have a t random variable of the form T = 
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Z

U
k

, where U and Z are as in the 

definition of t-distribution, then  
 

  T 2 = 
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. 

 
Now Z2 is a chi-squared random variable with 1 degree of freedom, and U is chi-squared 
with k degrees of freedom, so T2 is an F-distribution with 1 degree of freedom in the 
numerator and k degrees of freedom in the denominator. So we could do any t-test (with 
two-sided alternative) as an F-test, by using the square of the t-statistic. 
 
III. (Optional – I won’t go over this in class.) Still Another Perspective 
 
Looking at the square of the t-statistic for the two-sample, equal-variance t-test in the 
case of equal sample sizes will give us some insight into generalizing the F-test to work 
for more than one sample and, eventually, to some other sampling designs as well.  
 
Under the null hypothesis µX = µY, the t-statistic is 
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Our additional restriction of equal sample sizes means m = n. So 
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Then our F statistic is 
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With our assumption that m = n, the denominator in this re-expression is just our pooled 
estimator of σ2, the common variance of the two populations. 
 
If the null hypothesis is true, then the two distributions (of X and Y) are the same -- so we 
may consider our two samples to be two samples of size n from the same N(µ,σ2) 
distribution. But we know that the sample means of samples of size n from an N(µ,σ2) 
distribution have an N(µ,σ2/n) distribution (the sampling distribution). Now the sample 
variance of a distribution is an unbiased estimator of the population variance of that 
distribution. Applying this to our N(µ,σ2/n) sampling distribution, we conclude that the 
random variable  
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(i.e., the sample variance for the sample 
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X ,Y { } from the distribution of sample means) is 
an unbiased estimator of σ2/n. (The b stands for "between sample") 
 
Using algebra,  
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Thus, if the null hypothesis is true, the numerator 
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estimator of σ2, so we expect the quotient in T2 to be close to 1. It can be proved that if 
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the null hypothesis is false, then the ratio T2 is greater than 1. So the F-test (equivalent to 
the t-test) can be interpreted as a test for the ratio of two estimates of σ2. 
 
This idea can be generalized to more than two samples: We form the sample variance for 
each sample, take the mean of these sample variances as one estimate of the common 
population variance σ2, and compare with a "between sample" estimate of σ2. With 
suitable modifications, this works, and is the idea behind the method of Analysis of 
Variance. However, we may, as above, multiply the numerator and denominator in the F-
statistic by constants to make interpretations and/or formulas easier. In the notation used 
in the textbook, for the special case n = m considered here, we would express the F-
statistic as 
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where SST (the sum of squares for treatments or treatment sum of squares) is  
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and SSE (the sum of squares for error or  error sum of squares) is 
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 is sometimes called the grand mean, abbreviated GM.) 

 
Exercises: (These exercises can be helpful to get you familiar with working with the 
notation.) 
 
i. Go through the algebra to check that the two expressions for the F-statistic are 
equivalent. 

 
ii. Express GM, SST and SSE using the following notation:  

The sample from the first random variable is Y11, Y12, … , Y1n, and the sample 
from the second random variable is Y21, Y22, … ,Y2n. (In other words, the random variable 
representing the tth observation from the ith population, for i = 1,2, is Yit.)  We will need to 
use double subscripts when we go to more than 2 populations; typically, populations in 
this class will be defined by treatments. 
  


