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MORE HYPOTHESIS TESTING FOR TWO-WAY ANOVA 
 
What do we do after testing for interaction? 
This depends on whether or not interaction is significant (statistically or otherwise) and 
on what the original questions were in designing the experiment and on whether or not 
the analyzer wishes to engage in data-snooping and on the context of the experiment. We 
will spend a while discussing this. 
 
I. If we reject H0

AB (i.e., assume there is interaction) then it is usually inappropriate to test 
for main effects (that is, the contributions of the two factors A and B separately), since 
the question of what a “main effect” is in the presence of interaction is unclear. (How can 
you “separate out” the effect of A from the interaction if there is interaction?) Instead, it 
is usually preferable to use the equivalent cell-means model to examine contrasts in the 
treatment combinations. 
 
II. If we do not reject H0

AB (i.e., decide there is no interaction), then we are usually 
interested in main effects. These can be tested within the complete model. Staying with 
this model is advisable rather than switching to the inequivalent main-effects model. 
 
 
Testing the contribution of each factor in the complete model (equal sample sizes) 
 
Note: We are still assuming equal sample sizes.  
 
We wish to test whether or not the factor A is needed in the model. Since A is included in 
two ways, via the αi's and also via the interaction terms (αβ)ij, we can frame this question 
as a hypothesis test with null hypothesis  
 H0

A+AB: Every αi and every (αβ)ij = 0 
and alternate hypothesis 
 Ha

A + AB: At least one of the αi''s or (αβ)ij's is not zero. 
 
However, it is traditional to use instead the following test: 
 H0

A: α1*= α2*= … αa* 
 Ha

A: At least two of the αi*’s are different, 
where αi*= αi +(

! 

"# )i• . That is, the test is whether or not the levels of A, averaged over 
the levels of B, have the same average effect on the response. If there is no interaction, 
then the two null hypotheses, H0

A + AB  and H0
A (and hence the corresponding submodels) 

are the same.   
 
We will again use an F test comparing the full model with a reduced model: the one  
where H0

A is true. If sample sizes are equal, it can be shown that the least squares 
estimate of E[Yijt] under this new reduced model (i.e, under H0

A) is  
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giving sum of squares for the reduced model 
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which by appropriate algebraic manipulations becomes 
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so the sum of squares for treatment factor A is 
  ssA = ssE0
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which resembles the formula for ssT used to test equality of effects in one-way analysis 
of variance. The reasoning behind the test used is: If H0

A is true, then ssA should be small 
compared to ssE, so we will have evidence lending doubt to H0

A if ssA/ssE is unusually 
large. 
 If SSA is the random variable corresponding to ssA, it can be shown that  
when H0

A is true and sample sizes are equal,  
i) SSA/σ2 ~ χ2(a-1) 
ii) SSA and SSE are independent. 

Thus, when sample sizes are equal and H0
A is true,  
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MSA

MSE
 ~ F(a-1,n-ab) 

Since msA/msE is just a scalar multiple of the ratio ssA/ssE,  we can use msA/msE as a 
test statistic, rejecting for large values. 
 
Similarly, we can form the sum of squares for treatment factor B and obtain an F-test 
based  on 
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for  
 H0

B: Every βj  and every (αβ)ij = 0 
against the alternate hypothesis 
 Ha

B: At least one of the βj 's or (αβ)ij's is not zero. 
 
 
 
Analysis of Variance Table 
For each of the three tests (for interaction, effect of A and effect of B), we have a 
corresponding sum of squares, ssAB, ssA, and ssB. We also have the error sum of 
squares, ssE. If we add up the formulas for these three sums of squares and do 
appropriate algebraic manipulations, we will get 
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This last sum of squares is called the total sum of squares, denoted ssT. It can be seen as 
a measure of the total variability of the data without taking into account either A or B. 
Similarly, ssE is a measure of the variability taking into account A, B and their 
interaction; ssA is a measure of the variability taking B into account but not A, and ssB is 
a measure of the variability taking A into account but not B.  
  
The sums of squares and the additional information used in the tests for A, B and AB are 
traditionally summarized in an Analysis of Variance Table with one line each for A, B, 
AB, error, and "total sum of squares"  

sstot = ssA + ssB + ssAB + ssE 
 
Interpreting ANOVA tests 
Interpretation requires thought -- we need to taking into account the purpose of the study, 
the context, multiple comparisons, and whether or not we are willing to do data snooping.  
Interpretation can sometimes be frustrating  -- for example, what if the test for interaction 
is significant, but the test for one of the factors is not?  
 
Examples: Battery and reaction time. 

 
Note: When sample sizes are unequal, the formulae for the sums of squares are more 
complicated, and the corresponding random variables are not independent. More on this 
later.  


