SPLIT PLOT DESIGNS

Key Features: More than one type of experimental unit and more than one
randomization.

Typical Use: When one factor is difficult to change.

Example (and terminology): An agricultural researcher is studying the effects of corn
variety and irrigation level on corn yields. Four varieties of corn and three irrigation
levels are used. It is easy to plant a specified variety of corn wherever told to do so.
(Thus, variety is an easy-to-change factor.) However, irrigation is done by large
sprinklers that irrigate a large area of land. (Thus, irrigation is a difficult-to-change
factor.) A crossed factorial experiment with just two replications of each of the twelve
treatment combinations would require 24 large areas of land. This is beyond resources
available.

To get around the problem: Use just six plots of land, chosen so that each can be
irrigated at a set level without affecting the irrigation of the others. (These large plots are
called the whole plots.) Randomly assign irrigation levels to each whole plot so that each
irrigation level is assigned to exactly two plots. (Irrigation is called the whole-plot
factor). Divide each whole plot into four subplots. (Each subplot is called a split plot.)
Within each whole plot, randomly assign the four corn varieties to the four split plots.
(Variety is called the split-plot factor.)

1. Draw a picture to illustrate the design.
2.What are the two experimental units and the corresponding two randomizations?

3. How is this design like a two-way crossed factorial design? How are the two designs
different?

4. How is this like a randomized complete block design? How are the two designs
different?

5. Does the split-plot design introduce any possible confounding?

Second example: An industrial experimenter is studying how the water resistance of
wood depends on the pretreatment (two types) and the stain (four types). It turns out to be
very difficult to apply the pretreatment to a small wood panel, so instead each type of
pretreatment is applied to a whole board, the board is then cut into four smaller wood
panels, and one type of stain is applied to each panel. Six whole boards are used. Give
details to make this into a split-plot design. Identify whole and split plots and whole-plot
and split-plot factors. Is there any confounding?

Note: The book discusses the more complex situation where whole plots are within
blocks.



Model for Split-Plot Designs

A split-plot experiment can be considered as two experiments superimposed: One
experiment has the whole-plot factor applied to the large experimental units (whole
plots), and the other experiment has the split-plot factor applied to the smaller
experimental units (split plots). The model will reflect this by including two error terms:
the whole-plot random error € and the split-plot random error €°. To get subscripts
straight, we will need to set notation:

* A (with alevels) is the whole-plot factor.

* B (with b levels) is the split-plot factor.

* Each level of A is assigned to / whole plots. (So there are a/ whole plots.)
* Each level of B is assigned to m split plots.

Exercise: What are A, B, a, b, /, and m in the examples?

The model (Equation 19.2.3 on p. 678) when both A and B are fixed factors is given on
two lines to emphasize the two error terms:

Yij =0+ o+ e
S
+ B + ()i + Eju(iu)

siuw’s and ¢ jt(iu)s’S all mutually independent.
Exercise: Why is the nesting notation in the subscript of the split-plot error used?

Note: The design and model we are working with are the simplest form of split-plot
designs. The more general form discussed in the book also has blocks containing the
whole plots. (More on this later.) There are also random-effects and mixed-effects forms
of split-plot designs, and forms incorporating more than two factors. There are also split-
split-plot designs, where each split-plot is further divided into subplots.

Analysis of Split-Plot Designs

For now, we will discuss only the model described above. As suggested by the form of
the model, the analysis combines two separate analyses: the whole plot analysis and the
split-plot analysis. The idea is that the whole plots act like blocks for the split plot
analysis. The sum of squares for whole plots, ssW, is calculated in a similar fashion to the
sum of squares for blocks in a randomized complete block design. The whole plot error
sum of squares is then



SSEw = ssW — ssA.
The split plot error sum of squares is

ssEg = sstot — ssW —ssB — ssAB.
Each has an associated degree of freedom. Mean squares are defined as sums of squares
divided by degrees of freedom. The test statistics are:

Null hypothesis Test Statistic
H,": No effect of A beyond interaction | msA/msEyw
H,": No effect of B beyond interaction | msB/msEsg
Ho P: No interaction msAB/msEg

To run on Minitab and many other programs, use the following trick: Create a new
variable (usually called W or WP) that indicates which whole plot each observation
belongs to. (Use 1, 2, ..., al to label the whole plots.) In General Linear Model, declare
this variable random. In specifying factors, indicate that this factor is nested in A (the
whole plot factor).

Example: In the experiment studying the effect of pretreatment and stain on water
resistance, the data (including W) are as shown:

pretreat | stain | resist | W 1 2 60.9 2
2 2 53.5 4 1 4 55.3 2
2 4 32.5 4 1 3 51.1 2
2 1 46.6 4 1 1 57.4 2
2 3 35.4 4 2 1 32.1 6
2 4 44.6 5 2 4 30.1 6
2 1 52.2 5 2 2 34.4 6
2 3 45.9 5 2 3 32.2 6
2 2 48.3 5 1 1 52.8 3
1 3 40.8 1 1 3 51.7 3
1 1 43.0 1 1 4 553 3
1 2 51.8 1 1 2 59.2 3
1 4 45.5 1

In Minitab, use General Linear Model.
Response: resist
Model: pretreat W( pretreat) stain pretreat™ stain
Random: W

The output is:



General Linear Model: resist versus pretreat, stain, W

Factor

pretreat fixed
W(pretreat) random
stain fixed

S oo N

1
1
1

N NN

Type Levels Values

3 4
3 4

Analysis of Variance for resist,

Source DF Seq SS
pretreat 1 782.04

W (pretreat) 4 775.36
stain 3 266.00
pretreat*stain 3 62.79
Error 12 152.52
Total 23 2038.72
Note:

1. We ignore the P-value for W.

2. This does not work with Minitab 10.
3. ssEw is in the line W(pretreat).

4. ssEg 1s in the line Error

5

6. Check that the test ratios are as they should be.
7

Interpret the output:

56

using

Adj

782.
775.
266.

62.
152.

Adjusted SS for Tests

SS
04
36
00
79
52

Adj

782.
193.
88.
20.
12.

MS
04 4.
84 15.
67 6.
93 1.
71

. Check that the sums of squares add as indicated above.

. Note that ssEw is much larger than ssEs. This is typical. Why?

F
03
25
98
65

Note: If we don't designate W as random, we get different output:

General Linear Model: resist versus pretreat, stain, W

Factor

pretreat fixed
W (pretreat) fixed
stain fixed

S0 N

1
1
1

N NN

Type Levels Values

3 4
3 4

Analysis of Variance for resist,

Source DF
pretreat 1
W(pretreat) 4
stain 3
pretreat*stain 3
Error 12
Total 23

Seq

782.
775.
266.

62.
152.

2038

SS
04
36
00
79
52
.12

5

6

using

Adj

782.
775.
266.

62.
152.

Adjusted SS for Tests

SS
04
36
00
79
52

Adj

782.
193.
88.
20.
12.

MS
04 61.
84 15.
67 6.
93 1.
71

F
53
25
98
65

o O O o

[eNeNeNe)

P

.115
.000
.006
.231

P

.000
.000
.006
.231

What is different? How do we know the first method is the one we want?



Split Plot Designs with Blocks

The split plot model we have discussed is a special case (namely, just one block) of a
more general split plot design, where the whole plots are themselves nested within
blocks. If the randomization is such that each level of A appears exactly once per block
and each level of B appears exactly once per whole plot, the model for this design can be
expressed as

Yhij=w+06n+ o+ si(h)w (Equation 19.2.2 in Dean-Voss)
+ B+ (aB)i + Eimi)
where
h=1,...,s;1i=1,...,a;j=1,...,b
gimy ~ N(0, ow?), & imiy° ~ N(0, 05>),

gim) s and € jui>’s all mutually independent.

Here, 0y is the effect of the h™ block. The sums of squares are as for the case previously
discussed, except now

SSEw = ssW - ssO - ssA.

The appropriate test statistics are just as before:

Null hypothesis Test Statistic
H,": No effect of A beyond interaction | msA/msEyw
H,": No effect of B beyond interaction | msB/msEs
Ho P: No interaction msAB/msEg

Example: (The oats example on p. 681) The experimental area was divided into s = 6
blocks, each of which was subdivided into a = 3 whole plots. Varieties of oats (factor A)
were sown on whole plots according to a randomized complete block design (so every
variety appeared in every block exactly once). Each whole plot was further divided into b
= 4 split plots. Levels of manure were applied to the split plots according to a randomized
complete block design (so each level of B appeared in each whole plot exactly once).

To run this on Minitab, enter for model:
BLOCK A WP(BLOCK )B A*B
Specify BLOCK as random. (Minitab then automatically specifies WP as random, since it

is nested in BLOCK. If you try to specify WP as random, you should get an error
message.)



The output is:
General Linear Model: Y versus BLOCK, A, B, WP

Factor Type Levels Values

BLOCK random 6 123456

A fixed 3 012

WP(BLOCK) random 18 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18
B fixed 4 0123

Analysis of Variance for Y, using Adjusted SS for Tests

Source Model DF  Reduced DF Seq SS
BLOCK 5 5 15875.3
A 2 2 1786.4
WP(BLOCK) 12 10+ 6013.3
B 3 3 20020.5
A*B 6 6 321.8
Error 43 45 7968.8
Total 71 71 51985.9

+ Rank deficiency due to empty cells or collinearity.
No storage of results or further analysis will be done.

The last comment essentially means that we need to do the remaining calculations by
hand.

The “reduced degrees of freedom” are what we need.
The test statistics are then:
For interaction:
msAB/msEs = (ssAB/6)/(ssEs/45)
=(321.8/6)/(7968.8/45) =53.63/177.08 = 0.30
For an F(6, 45) distribution, this gives p-value 1 —0.0664 = .9336.
This is consistent with no interaction.
For level of manure (factor B):
msB/ msEg = (ssAB/3)/(ssEs/45)
=(20020.5/3)/(7968.8/45) = 6673.5/177.08 = 37.69

For an F(3,45) distribution, this gives p-value 1 — 1.0000 = 0.0000
(to four decimal places)

This gives strong evidence that the level of manure makes a difference.



For variety of oats (factor A):
msA/msEw = (ssA/2)/(ssWP(BLOCK)/10)
=(1786.4/2)/(6013.3/10) = 893.18/601.33 = 1.49.
For an F(2,10) distribution, this gives p-value 1—-0.7286 =.2714.
This is consistent with no effect of variety.
A further analysis would involve contrasts; see pp. 683 — 684.
Note that msEg = 177.08 (the estimate of error variance for whole plots) is noticeably

smaller than msEw = 601.33 (the estimate of error variance for split plots), as is typical of
split plot designs.



