ONE-WAY ANALYSIS OF VARIANCE MODEL

1

- The simplest type of analysis of variance
- Generalizes the two-sample equal variance t-test situation to more than two groups.

The situation:

- 1. Response variable Y (e.g., score on exam)
- 2. v populations $G_1, G_2, \dots G_v$ on which the response variable is defined.
 - e.g., "treatment groups": G_i is the population that has received the ith treatment (or: the ith level of the treatment factor)
- 3. Y_i : response for the population G_i .
 - i.e, $Y_i = Y|G_i$, Y restricted to G_i .
- 4. μ_i = the mean of Y on the ith population G_i.
 - i.e., $\mu_i = E(Y_i) = E(Y|G_i)$
 - μ_i is sometimes called the *true mean* for the ith treatment or population.

5. $\varepsilon_i = Y_i - \mu_i$.

- ε_i is a new random variable
- $\varepsilon_i = i^{th} error$

Example: Testing computer packages to teach a programming language, but comparing 3 such packages rather than 2.

- Y =
- v =
- $G_i =$
- μ_i =

Note:

- (5) can be re-expressed as $Y_i = \mu_i + \varepsilon_i$
- model equations
- a *linear* or *additive* model.
- means model.

Model assumptions:

1. For each i, we take a simple random sample of size r_i from population G_i .

3

- 2. The samples are independent.
- 3. Each ε_i is normally distributed.
- 4. All ε_i 's have the same variance σ^2 .

Comments:

1. For an experiment, assumptions (1) and (2) can be combined to say that *experimental units are randomly assigned to treatments*, subject only to the constraint that the sample size for the ith treatment is r_i . i.e.,the experiment is *completely randomized*.

- 2. *Balanced design*: When all r_i's are equal.
- 3. Assumptions (3) and (4) combined: $\varepsilon_i \sim N(0, \sigma^2)$

4. Note similarities to a linear regression model with indicator variables representing a categorical variable.

Alternate formulations of the model equations.

1. Letting $\mu = E(Y)$ (the *overall population mean*) and $\tau_i = \mu_i \cdot \mu$, the model equation becomes:

- $Y_i = \mu + \tau_i + \varepsilon_i$.
- τ_i : the *effect* of the ith treatment on the response.
- " effects model"

2. In terms of the sample random variables:

 Y_{it} = the random variable giving the response from the tth observation from G_i (e.g., the response from the tth observation of the ith treatment).

 $\epsilon_{it} = Y_{it} - \mu_i$.

The model equation becomes:

 $\boldsymbol{Y}_{it} = \boldsymbol{\mu}_i + \boldsymbol{\epsilon}_{it}$

or $Y_{it} = \mu + \tau_i + \varepsilon_{it}$.

Model assumptions become:

a) The ε_{it} are independent random variables.

b) For each i and t, $\varepsilon_{it} \sim N(0, \sigma^2)$

Note: This is a *fixed effects model*: We are assuming that we have specified treatments fixed by the experimenter. So the τ_i 's are parameters.

A generalization: The treatments are a random sample from a larger population of treatments. So the τ_i 's are random variables. (*random effects model* -- discussed in Chapter 17.)

Dot notation

Convenient notational conventions:

• A dot in a subscript position means "add over all values of the subscript in that position."

Examples:

$$Y_{i\bullet} = \sum_{t=1}^{r_i} Y_{it}$$
 $Y_{\bullet t} = \sum_{i=1}^{v} Y_{it}$ $Y_{\bullet \bullet} = \sum_{i=1}^{v} \sum_{t=1}^{r_i} Y_{it}$

• A bar over the variable as well as a dot in the subscript position means: divide by the number of possibilities for the subscript as well as add over all values of the subscript. (i.e., take the average over all values of the subscript.)

Example:

$$\overline{Y}_{i\bullet} = \frac{1}{r_i} \sum_{t=1}^{r_i} Y_{it}$$

More examples: