ONE-WAY ANALYSIS OF VARIANCE MODEL

- The simplest type of analysis of variance
- Generalizes the two-sample equal variance t-test situation to more than two groups.

The situation:

1. Response variable Y (e.g., score on exam)
2. v populations $G_{1}, G_{2}, \ldots G_{v}$ on which the response variable is defined.

- e.g., "treatment groups": G_{i} is the population that has received the $\mathrm{i}^{\text {th }}$ treatment (or: the $\mathrm{i}^{\text {ith }}$ level of the treatment factor)

3. Y_{i} : response for the population G_{i}.

- i.e, $\mathrm{Y}_{\mathrm{i}}=\mathrm{YlG}_{\mathrm{i}}, \mathrm{Y}$ restricted to G_{i}.

4. $\mu_{\mathrm{i}}=$ the mean of Y on the $\mathrm{i}^{\text {ith }}$ population G_{i}.

- i.e., $\mu_{\mathrm{i}}=\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{Y}_{\mathrm{I}} \mathrm{G}_{\mathrm{i}}\right)$
- μ_{i} is sometimes called the true mean for the $\mathrm{i}^{\text {it }}$ treatment or population.

5. $\varepsilon_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\mu_{\mathrm{i}}$.

- ε_{i} is a new random variable
- $\varepsilon_{\mathrm{i}}=i^{\text {th }}$ error

Example: Testing computer packages to teach a programming language, but comparing 3 such packages rather than 2 .

- $\mathrm{Y}=$
- $\mathrm{v}=$
- $\mathrm{G}_{\mathrm{i}}=$
- $\mu_{i}=$

Note:

- (5) can be re-expressed as $Y_{i}=\mu_{i}+\varepsilon_{i}$
- model equations
- a linear or additive model.
- means model.

Model assumptions:

1. For each i, we take a simple random sample of size r_{i} from population G_{i}.
2. The samples are independent.
3. Each ε_{i} is normally distributed
4. All ε_{i} 's have the same variance σ^{2}.

Comments:

1. For an experiment, assumptions (1) and (2) can be combined to say that experimental units are randomly assigned to treatments, subject only to the constraint that the sample size for the $\mathrm{i}^{\text {th }}$ treatment is r_{i}. i.e.,the experiment is completely randomized.
2. Balanced design: When all r_{i} 's are equal.
3. Assumptions (3) and (4) combined: $\varepsilon_{\mathrm{i}} \sim \mathrm{N}\left(0, \sigma^{2}\right)$
4. Note similarities to a linear regression model with indicator variables representing a categorical variable.

Alternate formulations of the model equations.

1. Letting $\mu=\mathrm{E}(\mathrm{Y})$ (the overall population mean) and $\tau_{\mathrm{i}}=$
$\mu_{i}-\mu$, the model equation becomes:
$\mathrm{Y}_{\mathrm{i}}=\mu+\tau_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$.

- τ_{i} : the effect of the $\mathrm{i}^{\text {ih }}$ treatment on the response.
- " effects model"

2. In terms of the sample random variables:
$\mathrm{Y}_{\mathrm{it}}=$ the random variable giving the response from the $\mathrm{t}^{\text {th }}$ observation from G_{i} (e.g., the response from the $\mathrm{t}^{\text {th }}$ observation of the $i^{\text {th }}$ treatment).

$$
\varepsilon_{\mathrm{it}}=\mathrm{Y}_{\mathrm{it}}-\mu_{\mathrm{i}} .
$$

The model equation becomes:

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{it}}=\mu_{\mathrm{i}}+\varepsilon_{\mathrm{it}} \\
\text { or } & \mathrm{Y}_{\mathrm{it}}=\mu+\tau_{\mathrm{i}}+\varepsilon_{\mathrm{it}} .
\end{aligned}
$$

Model assumptions become:
a) The $\varepsilon_{i t}$ are independent random variables.
b) For each i and t, $\varepsilon_{i t} \sim N\left(0, \sigma^{2}\right)$

Note: This is a fixed effects model: We are assuming that we have specified treatments fixed by the experimenter. So the τ_{i} 's are parameters.

A generalization: The treatments are a random sample from a larger population of treatments. So the τ_{i} 's are random variables. (random effects model -- discussed in Chapter 17.)

Dot notation

Convenient notational conventions:

- A dot in a subscript position means "add over all values of the subscript in that position."

Examples:

$$
Y_{i \bullet}=\sum_{t=1}^{r_{i}} Y_{i t} \quad Y_{\bullet t}=\sum_{i=1}^{v} Y_{i t} \quad Y_{\bullet \bullet}=\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} Y_{i t}
$$

- A bar over the variable as well as a dot in the subscript position means: divide by the number of possibilities for the subscript as well as add over all values of the subscript. (i.e., take the average over all values of the subscript.)

Example:

$$
\bar{Y}_{i \bullet .}=\frac{1}{r_{i}} \sum_{t=1}^{r_{i}} Y_{i t}
$$

More examples:

