INFERENCE FOR ONE-WAY ANOVA

1

To test equality of means for different treatments/levels:

 $H_0: \mu_1 = \mu_2 = \ldots = \mu_v$

Rephrase:

- In terms of effects:
- In terms of differences of effects:
- In terms of contrasts $\tau_i \overline{\tau}$, where $\overline{\tau} = \frac{1}{v} \sum_{i=1}^{v} \tau_i$:

Treatment degrees of freedom = minimum number of equations needed to state the null hypothesis = ____

Alternate hypothesis:

H_a:

Idea of the test:

Compare:

ssE under the *full* model (with all parameters)

and

 ssE_0 -- the error sum of squares under the *reduced* model -- i.e., the one assuming H_0 is true.

To calculate ssE_0 :

If H_0 is true, let τ be the common value of the τ_i 's. Then the reduced model is:

- $Y_{it} = \mu + \tau + \varepsilon_{it}^0$
- $\varepsilon_{it}^0 \sim N(0, \sigma^2)$
- the ε_{it}^{0} 's are independent,

where ε_{it}^{0} denotes the itth error in the *reduced* model.

To find ssE_0 : Use least squares to minimize

$$g(m) = \sum_{i=1}^{\nu} \sum_{t=1}^{r_i} (y_{it} - m)^2 :$$
$$g'(m) = \sum_{i=1}^{\nu} \sum_{t=1}^{r_i} 2(-1)(y_{it} - m) = 0,$$

which yields the estimate \overline{y} .. for $\mu + \tau$.

i.e., the least squares estimate of $\mu + \tau$ is

 $(\mu + \tau)^{\wedge} = \overline{y}..$ (By abuse of notation, called $\hat{\mu} + \hat{\tau}$).

So

$$ssE_{0} = \sum_{i=1}^{\nu} \sum_{t=1}^{r_{i}} (y_{it} - \overline{y}_{i})^{2}$$

which can be shown (proof might be homework) to equal

 $\sum_{i=1}^{\nu} \sum_{t=1}^{r_i} y_{it}^2 - n(\overline{y}..)^2$

Note that ssE and ssE_0 can be considered as minimizing the same expression, but over different sets:

4

ssE minimizes $\sum_{i=1}^{t} \sum_{t=1}^{r_i} (y_{it} - m - t_i)^2$ over the set of all v + 1-tuples (m, t₁, t₂, ..., t_v)

 ssE_0 can be considered as minimizing the same expression over the subset where all t_i 's are 0. Therefore ssE_0 must be at least as large as ssE:

 $ssE_0 \ge ssE$.

If H_0 is true, ssE and ssE₀ should be about the same.

This suggests: Use the ratio $(ssE_0-ssE)/ssE$ as a test statistic for the null hypothesis:

If H_0 is true, this ratio should be small, so an unusually large ratio would be reason to reject the null hypothesis.

The difference ssE_0 -ssE is called the *sum of squares* for treatment, or treatment sum of squares, denoted ssT.

3

Using the alternate expressions for ssE₀ and ssE:

$$ssT = ssE_{0} - ssE = \sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{it}^{2} - n(\bar{y}_{..})^{2} - \left(\sum_{i=1}^{v} \sum_{t=1}^{r_{i}} y_{it}^{2} - \sum_{i=1}^{v} r_{i}(\bar{y}_{i},)^{2}\right)$$
$$= \sum_{i=1}^{v} r_{i}(\bar{y}_{i},)^{2} - n(\bar{y}_{..})^{2}$$
$$= \sum_{i=1}^{v} \frac{(y_{i},)^{2}}{r_{i}} - \frac{(y_{..})^{2}}{n} \quad \text{(using definitions)}$$
$$= \sum_{i=1}^{v} r_{i}(\bar{y}_{i}, - \bar{y}_{..})^{2} \quad \text{(possible homework)}$$

This last expression can be considered as a "between treatments" sum of squares --- we are comparing each treatment sample mean \overline{y}_{i} with the grand (overall) mean $\overline{y}_{..}$

By contrast, our denominator, $ssE = \sum_{i=1}^{v} \sum_{t=1}^{r_i} (y_{it} - \overline{y}_i)^2$ is a "within treatments" sum of squares: it compares each value with the mean for the treatment group from which the value was obtained.

Using the model assumptions, it can be proved that:

- $ssE/\sigma^2 \sim \chi^2(n v)$
- If H_0 is true, ssT/ $\sigma^2 \sim \chi^2(v 1)$
- If H_0 is true, then ssT and ssE are independent.

Thus, $\underline{if} H_0$ is true

$$\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)} \sim \mathbf{F}_{v-1,\mathbf{n}-v}.$$

6

Now $\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)}$ simplifies to $\frac{ssT/(v-1)}{ssE/(n-v)}$, which we can calculate from our sample.

We originally wanted to test ssT/ssE, but $\frac{ssT/(v-1)}{ssE/(n-v)}$ is just a constant multiple of ssT/ssE, so good enough for our purposes:

 $\frac{ssT/(v-1)}{ssE/(n-v)}$ is unusually large exactly when ssT/ssE is unusually large.

Thus, we can use an F test, with test statistic

 $\frac{ssT/(v-1)}{ssE/(n-v)}$, to test our hypothesis.

Note: We can look at ssT/(v-1) and ssE/(n-v) as we did in the equal-variance, two-sample t-test:

- ssE/(n-v) is a pooled estimate of the common variance σ^2
- If H_0 is true, then ssT/(v 1) can be regarded as another estimate of σ^2 .

Notation:

ssT/(v-1) is called msT (*mean square for treatment* or *treatment mean square*

ssE/(n-v) is called msE (*mean square for error* or *error mean square*).

So the test statistic is F = msT/msE.