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INFERENCE FOR CONTRASTS (Chapter 4) 

 

Recall: A contrast is a linear combination of effects 

with coefficients summing to zero: 
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Specific types of contrasts of interest include: 

• Differences in effects 

• Differences in means 

 

A special type of difference in means often of interest 

in an experiment with a control group: The difference 

between the control group effect and the mean of the 

other treatment effects. 

 

Recall: The least squares estimator of the contrast 
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It's unbiased: 
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Recall two model assumptions: 

 

• Yit = µ + !i + "it . 

• The "it are independent random variables.  

 

This implies that the Yit's are independent.  

 

Since each 
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i"  is a linear combination of the Yit's for 

the ith treatment group only, it follows that the 
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Recall two model assumptions: 

• Yit = µ + !i + "it . 

• For each i and t, "it ~ N(0, #2) 

 

These imply: 

  

 Yit ~ N(µ + !i , #
2) 

 

Since the Yit's are independent, each 

! 

Y 
i" , as a linear 

combination of independent normal random 

variables, is also normal.  

 

Since the contrast estimator 
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combination of the independent normal random 

variables 
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Y 
i" , it too must be normal. 

 

Summarizing: 
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Standardizing,  
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Using the estimate msE for #2, we obtain the 

standard error for the contrast estimator 
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In terms of random variables: 
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Replacing the standard deviation of the contrast by 

the standard error in (*) gives 
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which no longer has a normal distribution because of 

the substitution of MSE for #.  

 

The usual trick works: 
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As mentioned before, MSE/ #2 = SSE/[(n-v) #2] ~ 

$2(n-v)/(n-v). It can be proved that the numerator and 

denominator in (**) are independent. Thus  
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We can use this as a test statistic to do inference 

(confidence intervals and hypothesis tests) for 

contrasts. 

 

Example: In the battery experiment, treatments 1 and 

2 were alkaline batteries, while types 3 and 4 were 

heavy duty. To compare the alkaline with the heavy 

duty, we consider the difference of means contrast D 

=  (1/2)(!1 + !2) - (1/2)(!3 + !4).  

• Find a 95% confidence interval for the contrast.  

• State precisely what the resulting confidence 

interval means. 

• Perform a hypothesis test with null hypothesis: The 

means for the two types are equal.  
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Comments:  
 

1. For a two-sided test, we could also do an F-test 

with test statistic t2. 

 

2. A very similar analysis shows:  

 

• The standard error for the ith treatment mean µ + !i 

is 
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msE

r
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• The test statistic  
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has a t-distribution with n - v degrees of freedom.  

 

So we can do hypothesis tests and form confidence 

intervals for a single mean. 

 

2. We haven't done examples of finding confidence 

intervals or hypothesis tests for effect differences or 

for treatment means, since in practice in ANOVA, 

one does not usually do just one test or confidence 

interval, so modified techniques for multiple 

comparisons are needed. 
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The Problem of Multiple Comparisons 

 

Suppose we want to form confidence intervals for 

two means or for two effect differences. If we formed 

a 95% confidence interval for, say, !1 - !2, and 

another 95% confidence interval for !3 - !4, we would 

get two intervals, say (a,b) and (c,d), respectively. 

These would mean: 

 

1. We have produced (a,b) by a method which, for 

95% percent of all completely randomized samples of 

the same size with the specified number in each 

treatment, yields an interval containing !1 - !2, and  

 

2. We have produced (c,d) by a method which, for 

95% percent of all completely randomized samples of 

the same size with the specified number in each 

treatment, yields an interval containing !3 - !4.  

 

But there is absolutely no reason to believe that the 

95% of samples in (1) are the same as the 95% of 

samples in (2).  
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If we let A be the event that the confidence interval 

for !1 - !2 actually contains !1 - !2, and let B be the 

event that the confidence interval for !3 - !4 actually 

contains !3 - !4, the best we can say in general is the 

following: 

 

P(obtaining a sample giving a confidence interval 

for !1 - !2 that actually contains !1 - !2 and also 

giving a confidence interval for !3 - !4 that actually 

contains !3 - !4) 

= P(A%B) = 1 - P((A%B)C) 

  = 1 - P(AC &BC) 

  = 1 - [P(AC) +  P(BC) - P(AC % BC)] 

  = 1 - P(AC) -  P(BC) + P(AC % BC) 

  ! 1 - P(AC) -  P(BC)   

= 1 - 0.05 - 0.05 = 0.90 

 

Similarly, if we were forming k 95% confidence 

intervals, our "confidence" that for all of them, the  

corresponding true effect difference would lie in the  

corresponding CI would be reduced 

to 1 - .05k.  

 

Thus, other techniques are needed for such  

"simultaneous inference" (or "multiple 

comparisons"). 

 


