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     Notes for M 384E, Wednesday, January 21, 2009 
 
(Please note: I will not pass out hard-copy class notes in future classes. If there are 
written class notes, they will be posted on the web by the night before class for you to 
download yourself.) 
 
This is an introductory course in Analysis of Variance and Design of Experiments. 
 
I. BRIEF OVERVIEW 
 Questions: 
 1. What is Analysis of Variance? 
 2. How is Analysis of Variance connected to Design of Experiments? 
 
 Brief Answers: 
 1. Analysis of Variance (ANOVA) is a methodology that can be used for 
statistical inference in a variety of situations generalizing the equal-variance two-sample 
t-test. 
 2. The details of implementation of ANOVA depend on the design of the method 
for collecting data -- typically, by an experiment. The design needs to take into account 
the methods of analysis as well as the particulars of the context (the question of interest, 
factors that may influence the variable of interest, and constraints such as time and 
budget.) 
 
II. MODEL ASSUMPTIONS FOR STATISTICAL PROCEDURES 
 
Statistical procedures typically have certain model assumptions. These are assumptions 
about the distributions of random variables involved, or about how samples are chosen, 
or about the type of relationship between the variables involved.  The essence of applying 
statistics is to find a model that does all of the following: 
 1. Fits the real-word situation involved well enough. 
 2. Leads to a valid method of statistical analysis.  
 3. Gives information relevant to the questions of interest. 
 
In using statistics, always bear in mind the words of the statistician G.E. Box: 
 
 All models are wrong; some are useful.  
 
This means that models never fit the real-world situation exactly, but we need to be sure 
that they fit "well enough" and that they give relevant information. 
 
 
III. REVIEW OF THE EQUAL VARIANCE TWO-SAMPLE T-TEST (focusing on the 
model assumptions and why they are important.) 
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(Note: There is another two-sample t-test that does not assume equal variance. However, 
the equal variance test is the one we will be concerned with here, since it is the one that 
generalizes to the Analysis of Variance method.) 
 
Be sure to review the handout Review of Basic Statistical Concepts if you are confused 
about notation or basic concepts used below. 
 
In discussing the equal variance two-sample t-test, we will focus on the model 
assumptions and why they are important for good application of the method. 
 
Model Assumptions for the equal variance two-sample t- test: 
 1. x1, x2, … , xm and y1, y2, … yn are independent, random samples from random 
variables X and Y. 
 2. X and Y are each normally distributed. 
 3. X and Y have the same variance (which is not known) 
 
Denote the means of X and Y by µX and µY, respectively. (These are population means, 
not to be confused with sample means 

! 

x  and 

! 

y ) 
 
We wish to test the null hypothesis H0: µX = µY 
against the two-sided alternative Ha: µX ≠ µY 
 
Example: A large company is planning to purchase a large quantity of computer 
packages designed to teach a new programming language. A consultant claims that the 
two packages are equal in effectiveness. To test this claim, the company randomly selects 
60 engineers and randomly assigns 30 to use the first package and 30 to use the second 
package. Each engineer is given a standardized test of programming skill after 
completing the training with the assigned package. The scores of the 30 engineers 
assigned to the first package are x1, x2, … , xm; the scores of those assigned to the second 
package are y1, y2, … yn. (In this example, n = m = 30.) The random variable X is "test 
score of an engineer from this company using the first package." The random variable Y 
is "test score of an engineer from this company using the second package". Since the 
engineers are randomly chosen and randomly assigned to the package, assumption (1) is 
satisfied. Since the test, like most standardized tests, is devised and scored to have a 
normal distribution of scores, assumption (2) is reasonable. It is plausible (we hope) to 
assume that the variability in scores will not depend on the package chosen, so 
assumption (3) seems reasonable (although perhaps we might want to look the data to get 
an additional check on whether this assumption is reasonable).  
 
Outline of what the test involves and why it works (focusing on where the model 
assumptions are needed):  
(For more details, see Ross, Section 4.2 or Wackerly Section 10.8) 
 
Denote the (unknown) variance of X and Y by σ2.  
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Notation: The notation X ~ N(µX, σ2) is short for "the random variable X is normally 
distributed with mean µX and variance σ2". Thus from our assumptions: 
 
  X ~ N(µX, σ2) and Y ~ N(µY, σ2) 
  
From our sample y1, y2, … yn, we can calculate the sample mean 

! 

y , which is our best 
estimate of the mean µY. We could also calculate the sample mean for any random 
sample of size n chosen from Y. This process ("take a random sample of size n from Y 
and calculate its sample mean") describes a new random variable, which we will call 

! 

Y . 
Thus, 

! 

y  is the value of the random variable 

! 

Y  obtained by picking our particular sample. 
Since 

! 

Y  is a random variable, it has a distribution (called a sampling distribution, since 
the value of 

! 

Y depends on the sample chosen). Mathematical theory tells us that the 
random variable 

! 

Y  is normally distributed with mean µY and variance σ2/n:  

! 

Y  ~ N(µY, σ2/n) 
 
This conclusion uses the following facts (or assumptions, as the case may be): 

• y1, y2, … yn is a random sample  
• Y ~ N(µY, σ2). 

 
Similarly (given the model assumptions), 

! 

X  ~ N(µX, σ2/m) 
 
Our hypotheses can be restated in terms of the difference µX - µY: 
 
 H0: µX - µY = 0  Ha: µX - µY ≠ 0 
 
Thus we consider the difference 

! 

x  - 

! 

y  as an estimate of µX - µY. In the language of 
random variables, 

! 

X - 

! 

Y is an estimator of µX - µY. 
Since our samples from X and Y are independent, the random variables 

! 

X and 

! 

Y are also 
independent. Mathematical theory tells us that: 

1. The sum of independent normal random variables is normal (so we know 
that

! 

X - 

! 

Y  is normal). 
2. The mean (expected value) of the sum of random variables is the sum of the 
means of the terms (so we know that the mean of 

! 

X - 

! 

Y is µX - µY). 
3.  The variance of the sum or difference of independent random variables is the 
sum of the variances of the terms (so we know that Var(

! 

X - 

! 

Y ) = Var(

! 

X ) + 
Var(

! 

Y ) = σ2/m + σ2/n).  
Thus we have: 
 

! 

X - 

! 

Y  ~ N(µX - µY,  σ2/m + σ2/n). 
Therefore  

 

! 

X "Y " (µ
X
"µ

Y
)

# 2

m

+
# 2

n

 ~ N(0,1) (i.e., is standard normal). 
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If we knew σ2, this would give us a test statistic to do inference on µX - µY. But we don't 
know σ2. We do, however, have two estimates of σ2: the two sample variances 
 

 sX
2 = 

! 

(x
i
" x )2

m "1
i=1

m

#  and  sY
2 =

! 

(yi " y )2

n "1i=1

n

#  

 
Consistently with our notation 

! 

y  and 

! 

Y  above, we will use capital letters to refer to the 
underlying random variables (the estimators of σ2): 
 

 SX
2 = 

! 

(X
i
" X )2

m "1
i=1

m

#  and  SY
2 =

! 

(Y
i
"Y )2

n "1
i=1

n

#  

 
Which of these two estimators should we use? What seems better than picking one or the 
other is taking their average. But since they are come from possibly different sized 
samples, we use their weighted mean, yielding the pooled estimator 
 

 S2 = 

! 

(m "1)S
x

2 + (n "1)S
Y

2

(m "1) + (n "1)
 = 

! 

1

m + n "2
(xi " x )

2

i=1

m

# + (yi " y )
2

i=1

n

#
$ 

% 
& 
& 

' 

( 
) 
) 
. 

 

So we consider the random variable T = 

! 

X "Y " (µ
X
"µ

Y
)

S
2

m
+

S
2

n

 

 
Mathematical theory (using the model assumptions) tells us that T has a t-distribution 
with n + m -2 degrees of freedom. If H0 is true, then T is just 
 

! 

X "Y 

S
2

m
+

S
2

n

 = 

! 

X "Y 

S
1

m
+
1

n

. 

 

Summarizing: If H0 is true, then the random value T = 

! 

X "Y 

S
1

m
+
1

n

 has a t-distribution 

with n + m - 2 degrees of freedom.  We can use this fact to perform our hypothesis test: 
Calculate the value t of T determined by our sample.  Calculate the corresponding p-
value: 
 

p = the probability of obtaining a value of T (having a t-distribution with n + m + 
2 degrees of freedom) with absolute value greater than or equal to |t|. 

 
If p is sufficiently small, we choose to reject the null hypothesis in favor of the alternate. 
→   Note that this is not the same as saying Ha is true, and is also not the same as saying 
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that H0 is false; it just says that Ha appears to be the better option, given the evidence at 
hand. 
Otherwise, we do not reject H0 -- the evidence is consistent with it.  
→  Note that this is not the same as saying that H0  is true, and it is also not the same as 
saying Ha is false; it’s just saying that there is no reason to  prefer Ha to H0 , given the 
evidence at hand. 
 
Example: Continuing with the example of comparing the two packages for teaching a 
new programming language, if we obtain sample mean 72.5 and sample standard 
deviation 10.3 for the first method, and sample mean and standard deviation 70.1 and 
11.8, respectively, for the second method, then the pooled sample variance is 
 
 s2 = [29(10.32) + 29(11.82)]/58 = 122.665, 
 
so the pooled standard deviation is 
 
 s = √(122.665) = 11.075, 
 
the pooled standard error (which is our estimate of the standard error of the random 
variable 

! 

X - 

! 

Y ) is 
 

 se(

! 

x  - 

! 

y ) = s

! 

1

30
+
1

30
 = 2.86 

 
and the t-statistic is 

 

! 

72.5 " 70.1

11.075
1

30
+
1

30

 = 2.4/2.86 = .8392 

 
The corresponding p-value (two-tailed, using a t-distribution with 58 degrees of freedom) 
is 0.404825. This does not give us any evidence against the null hypothesis, so we have 
not detected any significant difference between the two packages -- we have no reason, 
based on the test scores, to choose one over the other. 
 
We could also use the t-statistic to calculate a confidence interval for the difference µX - 
µY in the sample means. Suppose we want a 90% confidence interval. For a t-distribution 
with 58 degrees of freedom, 90% of all values lie between - 1.67155 and + 1.67155. So 
for 90% of all samples satisfying the model assumptions,   
 
  - 1.67155 < T < 1.67155. 
 
In other words, 
 

  - 1.67155 < 

! 

(X "Y ) " (µ
X
"µ

Y
)

se(X "Y )
 < 1.67155. 
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A bit of algebra manipulation shows that this is equivalent to  
 
 (

! 

X - 

! 

Y ) - 1.67155se(

! 

X - 

! 

Y ) < µX - µY < (

! 

X - 

! 

Y ) + 1.67155se(

! 

X - 

! 

Y ). 
 
Evaluating this for our sample gives the endpoints  
  
  (72.5 - 70.1) ± 1.67155(2.86) 
 
for the confidence interval, resulting in confidence interval ( -2.38, 7.18). 
 
Note that we are not asserting that µX - µY lies in this interval. All we have done is use a 
procedure that, for 90% of all pairs of simple random samples of sizes n, chosen 
independently from the populations in question, will give an interval that does contain µX 
- µY. Our sample could be one of the 10% yielding a confidence interval that does not 
contain µX - µY. 
 
Note also that the confidence interval contains zero. Thus our data are consistent with the 
possibility that µX - µY = 0 -- in other words, that µX = µY. (Note that this is the same 
conclusion we drew from the hypothesis test. ) 
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