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ESTIMATING PARAMETERS AND 

VARIANCE FOR ONE-WAY ANOVA 

 

Least Squares Estimates 

 

Typical purpose of experiment: Use the data to 

estimate or compare certain of the model parameters 

(or certain functions of the parameters). 

 

Data: The values yit for the random variables Yit 

obtained in our experiment: 

 

From treatment 1: y11, y12, … , 

! 

y
1r1 ; 

From treatment 2:  y21, y22, … , 

! 

y
2r2 ; 

 etc. 

 

Method of least squares.  

 

Example:  means model: Yit = µi + !it.  

 

We seek an estimate 

! 

ˆ µ 
i  for µi.  

 

Idea: find 

! 

ˆ µ 
i 's with the property that when we apply 

the estimated model to the data, the errors are as 

small as possible.  
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In other words: Make the "estimated error terms' 

(residuals) 

 eit = yit - 

! 

ˆ µ 
i  

as small as possible -- collectively.   

 

Picture: 

 

 

How to do this? 

Minimize the sum of the errors?  

Positives and negatives will cancel out 

 

Minimize the sum of the absolute values of the 

errors?  

Technical problems. 

 

Minimize the sum of the squared errors?  

Works reasonably well! 

 

Details: 
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Least squares for the effects model: 

(Some details might be homework.)  

 

We get the following v+1 equations ("normal 

equations") in the estimates 

! 

ˆ µ  and 

! 

ˆ " 
i  for µ and the 

"i's, respectively:  

 

 y.. - n

! 

ˆ µ  - 

! 

r
i
ˆ " 
i

i=1

v

#  = 0  

 

 yi. - ri

! 

ˆ µ  - ri

! 

ˆ " 
i  = 0, i = 1, 2, … , v. 

 

Note: Adding the last v equations gives the first one.  

 

Thus: only v independent equations in the v + 1 

unknowns 

! 

ˆ µ ,  

! 

ˆ " 
1, … , 

! 

ˆ " 
v -- hence infinitely many 

solutions.  

 

Solution to dilemma: Add the constraint 

 

 

! 

ˆ " 
i

i=1

v

#  = 0. 

 

Result: v + 1 independent equations in the v + 1 

unknowns, so a unique solution.  
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Comments: 

 

1. (For students with regression background) This is 

related to using only v - 1 indicator variables for a 

categorical variable with v categories in regression. 

 

2.  Solve for 

! 

ˆ µ  + 

! 

ˆ " 
i  : 

 

 

 

Solve for 

! 

ˆ " 
i  - 

! 

ˆ " j :  

 

 

 

Estimable functions: The functions of the parameters 

µ, "1, … , "v that do have unique least squares 

estimates.  Examples: µ + "i and "i - "j . 

 (See Sections 3.4.1 and 3.4.4.) 
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3. Functions of the parameters that have the form  

! 

c
i
"
i

i=1

v

#  where 

! 

c
i

i=1

v

" = 0 are called contrasts. For 

example, each difference of effects "i - "j is a contrast. 

Other contrasts, such as differences of averages, may 

be of interest as well in certain experiments. 

 

Example: An experimenter is trying to determine 

which type of non-rechargeable battery is most 

economical. He tests five types and measures the 

lifetime per unit cost for a sample of each. He also is 

interested in whether alkaline or heavy duty batteries 

are most economical as a group. He has selected two 

types of heavy duty (groups 1 and 2) and three types 

of alkaline batteries (groups 3, 4, and 5). So to study 

his second question, he tests the difference in 

averages,  ("1 + "2)/2  - ("3 + "4 + "5)/3. Note that this 

is a contrast, since the coefficient sum is  

1/2 + 1/2 - 1/3 - 1/3 - 1/3 = 0. 

 

(Similarly, we can show that every difference of 

averages is a contrast.) 
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Exercise (Possible homework): Every contrast 

! 

c
i
"
i

i=1

v

#  

is a linear combination of the effect differences "i - "j 

and is estimable, with least squares estimate 

! 

c
i
ˆ " 
i

i=1

v

#  = 

! 

ciy i•
i=1

v

"  

 

4. Since each Yit has the distribution of Yi , and      

Yi ~ N(µi , #
2), it follows from standard properties of 

expected values that E(

! 

Y
i•)  = µi. Since the Yit's are 

independent, it follows from standard variance 

calculations and properties of normal random 

variables that 

! 

Y 
i•~ N(µi, #

2/ri). 

 

Exercise: Go through the details of comment (4). 

Also verify that the least squares estimator 

! 

c
i
Y 

i•

i=1

v

"  of 

the contrast 

! 

c
i
"
i

i=1

v

#  (where 

! 

c
i

i=1

v

"  = 0) has normal 

distribution with mean 

! 

c
i
"
i

i=1

v

#  and variance 

! 

c
i

2

r
i

"
2

i=1

v

# . 

[Hint: You need to establish and use the fact that the 

! 

Y 
i•'s are independent.] 
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Variance Estimate 

 

For the ith treatment group, the sample variance is 

 

  si
2 = 

! 

yit " y i•( )
2

t=1

ri

#

ri "1
. 

 

The corresponding random variable  

 

Si
2 =  

! 

Y
it
"Y 

i•( )
2

t=1

r
i

#

r
i
"1

  

 

is an unbiased estimator for the population variance 

#2:  

E(Si
2) = #2.  

(Ross, Chapter 4 or Wackerly, Chapter 8) 

 

As in our discussion of the two-sample t-test, the 

average of the Si
2's will then also be an unbiased 

estimator of #2. To take into account different sample 

sizes we will take a weighted average: 

 

 S2 ( or 

! 

ˆ " 
2

) = 

! 

r
i
"1( )Si

2

i

#

r
i
"1( )

i

#  
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Note: denominator equals 

! 

r
i
"

i

# 1

i

#  = n - v.  

 

Exercise (might be homework): Check that S2 is an 

unbiased estimator of #2 -- that is, check that E(S2) = 

#2. 

 

Using the definition of Si
2, see that the numerator of 

S2 is  

! 

Y
it
"Y 

i•( )
2

t=1

r
i

#
i=1

v

#  --  called SSE,  the sum of squares 

for error or the error sum of squares.  

 

So  

  S2 = SSE/(n-v) -- called MSE, the mean 

square for error or error mean square.  
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The above are random variables. Their values 

calculated from the data are: 

 ssE = 

! 

yit " y i•( )
2

t=1

ri

#
i=1

v

#   

-- also called the sum of squares for error or 

the error sum of squares 

 

 msE = ssE/(n-v) 

  -- also called the mean square for error or 

error mean square 

 

 s2 = msE -- the unbiased estimate of #2 -- also 

denoted 

! 

ˆ " 
2

. 
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Note:  

• 

! 

yit " y i• is sometimes called the itth  residual, 

denoted 

! 

ˆ e 
it . So  ssE  = 

! 

ˆ e 
it

2

t=1

r
i

"
i=1

v

"  

 

• Many people use SSE and MSE for ssE and msE. 

 

• This unbiased estimate of #2 is sometimes called 

the within groups (or within treatments) variation, 

since it calculates the sample variance within each 

group and then averages these estimates.  

 

• Exercise (might be homework):  

 

ssE = 

! 

yit

2

t=1

ri

"
i=1

v

" # ri

i=1

v

" y i•
2

 

 


