MORE ON THE EQUAL-VARIANCE,
TWO-SAMPLE T-TEST

Robustness

Recall:

* All models are wrong; some are useful. (G.E.
Box)

* The discussion on whether the model assumptions
fit in the example about comparing two computer
packages suggests.

They illustrate: We can't expect the assumptions of
an inference procedure to apply exactly.

A procedure is said to be robust to departures from a
model assumption if the results are still reasonably
accurate when the assumption is relaxed to some
degree.

Robustness may be determined by theory or by
computer simulations.

Robustness of two-sample, equal-variance t-test:

* If samples are large enough, the Central Limit
Theorem (theory) tells us that even if X and Y are
not normally distributed, the distribution of X- Y is
approximately normal, so the test statistic will still
have a distribution that is approximately t with
m + n -2 degrees of freedom. Computer
simulations have shown that moderate departures
of X and Y from normality have little effect on the
distribution of the t-statistic.

Computer simulations:

* Simulations have also shown that this test is
relatively robust to departures from the equal
variance assumption, provided the two sample
sizes are equal or nearly equal.

* However, lack of independence can cause serious
problems -- the results of a t-test may be very
misleading.



Another perspective on the two-sample, equal-
variance t-test.

This test is equivalent to a certain F-test. The F-
test can be generalized to situations where we are
comparing more than two means and to some

sampling methods other than simple random samples.

More detail on distributions:

A t-distribution with k degrees of freedom is defined

as the distribution of a random variable of the form
z

T/, where
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* Z~N(0,1)

* U~ x*(k) (Chi-squared with k degrees of
freedom.)

* Z and U are independent.

A chi-squared distribution with k degrees of freedom
is defined as the distribution of a random variable
that is a sum of squares of k independent, standard
normal random variables.

The proof that our test statistic T for the equal-
variance, two-sample t-test has a t-distribution
follows from these facts:
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degrees of freedom. (Can be proved using model
assumptions)

* U and Z are independent (Can be proved using
model assumptions.)



An F-distribution F(v,, v,) with v, degrees of
freedom in the numerator and v, degrees of freedom
in the denominator is the distribution of a random
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variable of the form Ufv, where

* W~xi(v)
* U~yx*(v,), and
* U and W are independent.
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If we have a t random variable of the form T = ,U/k ,

where U and Z are as in the definition of t-
distribution, then
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Now Z? is a chi-squared random variable with 1
degree of freedom, and U is chi-squared with k
degrees of freedom, so T? is an F-distribution with 1
degree of freedom in the numerator and k degrees of
freedom in the denominator. So we could do any t-
test (with two-sided alternative) as an F-test, by using
the square of the t-statistic.

To get some insight, assume equal sample sizes and
look at the square of the t-statistic for the two-
sample, equal-variance t-test:

Under the null hypothesis uy = uy, the t-statistic is
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Assuming m = n,
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Then our F statistic is
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which is equivalent to
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Since m = n, the denominator in this re-expression is
just our pooled estimator of 67, the common variance
of the two populations.

If the null hypothesis is true, then the two
distributions (of X and Y) are the same -- so we may
consider our two samples to be two samples of size n
from the same N(u,0%) distribution. So we can
consider their means X and Y as samples from the
sampling distribution of the mean of this common
distribution.

Recall:

1. The sample means of samples of size n from an
N(u,0%) distribution have an N(u,0%/n) distribution
(the sampling distribution).

2.The sample variance of a distribution is an
unbiased estimator of the population variance of
that distribution.

Applying (1) and (2) to our sample X, ¥ from the
N(w,0*/n) sampling distribution, we conclude that the
random variable

- —_\ 2 f— —_\2
Y—X+Y +I7—X+Y
2 2

2-1

Sb:

is an unbiased estimator of o*/n. (The b stands for
"between sample.")

Using algebra,
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Thus, if the null hypothesis is true, the numerator

g()_( - }7)2 of T? is an unbiased estimator of 0°, so we

expect the quotient in T to be close to 1. It can be
proved that if the null hypothesis is false, then the
ratio T° is greater than 1. So the F-test (equivalent to
the t-test) can be interpreted as a test for the ratio of
two estimates of o°.

This idea can be generalized to more than two
samples: We form the sample variance for each
sample, take the mean of these sample variances as
one estimate of the common population variance o7,



and compare with a "between sample" estimate of o°.

With suitable modifications, this works, and is the
idea behind the method of Analysis of Variance.
However, we may, as above, multiply the numerator
and denominator in the F-statistic by constants to
make interpretations and/or formulas easier. In the
notation used in the textbook, for the special case n =
m considered here, we would express the F-statistic

as
SST

SSE[(2n -2) >

where SST (the sum of squares for treatments or
treatment sum of squares) is
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and SSE (the sum of squares for error or error sum
of squares) is
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( is sometimes called the grand mean,
abbreviated GM.)



