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MORE ON THE EQUAL-VARIANCE, 

TWO-SAMPLE T-TEST 

 

Robustness   

 

Recall: 

• All models are wrong; some are useful. (G.E. 

Box) 

• The discussion on whether the model assumptions 

fit in the example about comparing two computer 

packages suggests. 

 

They illustrate: We can't expect the assumptions of 

an inference procedure to apply exactly.  

 

A procedure is said to be robust to departures from a 

model assumption if the results are still reasonably 

accurate when the assumption is relaxed to some 

degree.  

 

Robustness may be determined by theory or by 

computer simulations.  
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Robustness of two-sample, equal-variance t-test: 

 

• If samples are large enough, the Central Limit 

Theorem (theory) tells us that even if X and Y are 

not normally distributed, the distribution of 

! 

X - 

! 

Y  is 

approximately normal, so the test statistic will still 

have a distribution that is approximately t with     

m + n -2 degrees of freedom. Computer 

simulations have shown that moderate departures 

of X and Y from normality have little effect on the 

distribution of the t-statistic.  

 

 Computer simulations: 

 

• Simulations have also shown that this test is 

relatively robust to departures from the equal 

variance assumption, provided the two sample 

sizes are equal or nearly equal.  

 

• However, lack of independence can cause serious 

problems -- the results of a t-test may be very 

misleading. 
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Another perspective on the two-sample, equal-

variance t-test.  

 

 This test is equivalent to a certain F-test. The F-

test can be generalized to situations where we are 

comparing more than two means and to some 

sampling methods other than simple random samples. 

 

More detail on distributions: 

 

A t-distribution with k degrees of freedom is defined 

as the distribution of a random variable of the form 

! 

Z

U
k

, where 

• Z~N(0,1) 

• U~ !2(k) (Chi-squared with k degrees of 

freedom.) 

• Z and U are independent. 

 

A chi-squared distribution with k degrees of freedom 

is defined as the distribution of a random variable 

that is a sum of squares of k independent, standard 

normal random variables. 
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The proof that our test statistic T for the equal-

variance, two-sample t-test has a t-distribution 

follows from these facts: 

 

• T = 

! 
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X
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 (algebra) 

 

• Z = 

! 

X "Y " (µ
X
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Y
)

# 2

m

+
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n

 is standard normal (seen earlier) 

 

• U = 

! 

(m + n " 2)S2

#
2  is chi-squared with m + n -2 

degrees of freedom. (Can be proved using model 

assumptions) 

 

 

• U and Z are independent (Can be proved using 

model assumptions.) 
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An F-distribution F(!1, !2) with !1 degrees of 

freedom in the numerator and  !2 degrees of freedom 

in the denominator is the distribution of a random 

variable of the form 

! 

W "
1

U "
2

, where   

• W ~ !2(!1) 

• U ~ !2(!2), and  

• U and W are independent. 

 

If we have a t random variable of the form T = 

! 

Z

U
k

, 

where U and Z are as in the definition of t-

distribution, then  

 

  T 2 = 

! 

Z
2

U
k

. 

 

Now Z2 is a chi-squared random variable with 1 

degree of freedom, and U is chi-squared with k 

degrees of freedom, so T2 is an F-distribution with 1 

degree of freedom in the numerator and k degrees of 

freedom in the denominator. So we could do any t-

test (with two-sided alternative) as an F-test, by using 

the square of the t-statistic. 
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To get some insight, assume equal sample sizes and 

look at the square of the t-statistic for the two-

sample, equal-variance t-test: 

 

Under the null hypothesis µX = µY, the t-statistic is 
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Assuming m = n, 
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Then our F statistic is 
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which is equivalent to  



 7 

! 

n

2
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Since m = n, the denominator in this re-expression is 

just our pooled estimator of "2, the common variance 

of the two populations. 

 

 

 

 

If the null hypothesis is true, then the two 

distributions (of X and Y) are the same -- so we may 

consider our two samples to be two samples of size n 

from the same N(µ,"2) distribution. So we can 

consider their means 

! 

X and 

! 

Y as samples from the 

sampling distribution of the mean of this common  

distribution. 

 

Recall:  

1. The sample means of samples of size n from an 

N(µ,"2) distribution have an N(µ,"2/n) distribution 

(the sampling distribution).  

2. The sample variance of a distribution is an 

unbiased estimator of the population variance of 

that distribution.  
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Applying (1) and (2) to our sample 

! 

X , 

! 

Y  from the 

N(µ,"2/n) sampling distribution, we conclude that the 

random variable  
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is an unbiased estimator of "2/n. (The b stands for 

"between sample.") 

 

Using algebra,  
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Thus, if the null hypothesis is true, the numerator 

! 

n
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of T2 is an unbiased estimator of "2, so we 

expect the quotient in T2 to be close to 1. It can be 

proved that if the null hypothesis is false, then the 

ratio T2 is greater than 1. So the F-test (equivalent to 

the t-test) can be interpreted as a test for the ratio of 

two estimates of "2. 

 

This idea can be generalized to more than two 

samples: We form the sample variance for each 

sample, take the mean of these sample variances as 

one estimate of the common population variance "2, 
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and compare with a "between sample" estimate of "2. 

With suitable modifications, this works, and is the 

idea behind the method of Analysis of Variance. 

However, we may, as above, multiply the numerator 

and denominator in the F-statistic by constants to 

make interpretations and/or formulas easier. In the 

notation used in the textbook, for the special case n = 

m considered here, we would express the F-statistic 

as 

  

! 

SST

SSE (2n "2) , 

 

where SST (the sum of squares for treatments or 

treatment sum of squares) is  
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and SSE (the sum of squares for error or  error sum 

of squares) is 
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 is sometimes called the grand mean, 

abbreviated GM.) 
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