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 RANDOM EFFECTS MODELS (Chapter 17) 
 
So far we have studied experiments and models with only fixed effect factors: factors 
whose levels have been specifically fixed by the experimenter, and where the interest is 
in comparing the response for just these fixed levels. 
A random effect factor is one that has many possible levels, and where the interest is in 
the variability of the response over the entire population of levels, but we only include a 
random sample of levels in the experiment. 
 
Examples: Classify as fixed or random effect. 
 
1. The purpose of the experiment is to compare the effects of three specific dosages of a 
drug on response. 
 
2. A textile mill has a large number of looms. Each loom is supposed to provide the same 
output of cloth per minute. To check whether this is the case, five looms are chosen at 
random and their output is noted at different times. 
 
3. A manufacturer suspects that the batches of raw material furnished by his supplier 
differ significantly in zinc content. Five batches are randomly selected from the 
warehouse and the zinc content of each is measured. 
 
4. Four different methods for mixing Portland cement are economical for a company to 
use. The company wishes to determine if there are any differences in tensile strength of 
the cement produced by the different mixing methods.  
 
Note: The theory behind the techniques we discuss assumes that the population of levels 
of the random effect factor is infinite. However, the techniques fit well as long as the 
population is at least 100 times the size of the sample being observed. Situations where 
the population/sample size ratio is smaller than 100 require  “finite population” methods 
which we will not cover in this class.  
 
The Random-Effects One-Way Model 
 
For a completely randomized design, with v randomly selected levels of a single 
treatment factor T, and ri observations for level i of T, we can use the model 
 
  Yit = µ + Ti + εit, 
where: 
  Each εit ~ N(0, σ2) 
  The εit’s are independent random variables 
  The Ti’s are independent random variables with distribution  N(0, σT

2)  
  The Ti’s and εit’s are independent of each other. 
 
Note: If all ri have the same value r, then we have a balanced design. 
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Caution: The terminology can be confusing. Here is how to think of the model:  
 
1. Each possible level of the factor T might have a different effect. “Effect of level i” is 
thus a random variable, hence has a certain distribution – the “distribution of effects”. 
One of our model assumptions is that this distribution is normal. By adjusting µ if 
necessary, we may assume this distribution of effects has mean 0. We call the variance of 
this distribution σT

2. 
 
2. The effect of level i of T is called (confusingly) Ti.  
 
3. Since the levels i are randomly chosen (that is, we have a simple random sample of 
levels), we can say that the Ti’s are independent random variables with the same 
distribution N(0, σT

2). 
 
4. The conditions on the εit’s are the same as in previous models. They say that the 
observations are independently taken within each level and between levels, and all have 
the same normal distribution. 
 
5. However, we also assume that the observations are made independently of the choice 
of levels, hence the last condition.  
 
(Think about what these mean in, e.g., Example 2 or Example 3 above.) 
 
 
Consequences: 
 
 E[Yit] =  
 
 Var(Yit) =  
 
 Yit ~ 
 
 Cov(Yit, Yis) = 
 
 ρ(Yit, Yis) = 
 
  
 
Thus: Observations within the same treatment level are correlated. Does this make sense?   
 
Terminology: σT

2 and σ2 are called variance components. (Why?) 
 
Hypothesis test: If we wish to test whether or not the level of the factor T makes a 
difference in the response, what should the null and alternate hypotheses be? 
 

! 

H
0

T : 
 

! 

H
a

T : 



 3 

Least squares estimates: Given data yit, i = 1, 2, … , v, t = 1, 2, … , ri, we can still use the 
method of least squares to obtain “fitted values” 

! 

ˆ y it = 

! 

y i•. However, our interest here will 
not be the fits, but the sums of squares obtained from them. In particular, we can still 
form  

 ssE = 

! 

yit " y i•( )
2

t=1

ri

#
i=1

v

#  

and the corresponding random variable 
 

 SSE = 

! 

Y
it
"Y 

i•( )
2

t=1

r
i

#
i=1

v

#  

Also as with the fixed effects model, we obtain the least squares estimate (or “fit”) 

! 

y ••
 for 

the submodel (assuming H0 is true) 
 
  Yit = µ + εit, 

and can form its error sum of squares ssE0 = 

! 

yit " y ••( )
2

t=1

ri

#
i=1

v

#  and the sum of squares for 

treatment ssT = ssE0 – ssE = 

! 

yit " y ••( )
2

t=1

ri

#
i=1

v

# -

! 

yit " y i•( )
2

t=1

ri

#
i=1

v

# , and  the corresponding 

random variable  

 SST = 

! 

Y
it
"Y ••( )

2

t=1

r
i

#
i=1

v

#  - 

! 

Y
it
"Y 

i•( )
2

t=1

r
i

#
i=1

v

#  

 
As with the fixed effects model, we can get an alternate expression for SSE (cf Equation 
3.4.5): 
 

 SSE = 

! 

Y
it

2

t=1

r
i

"
i=1

v

" # r
i
Y 

i•

2

i=1

v

"   (*) 

 
To find an estimator of σ2, we first  need to find E(SSE). We can use (*) if we find  
E(

! 

Y
it

2 ) and E(

! 

Y 
i•

2). To do this: 
 
Recall: Var(Y) = E(Y2) – [E(Y)]2, so 
 E(Y2) = Var(Y) + [E(Y)]2 
 
Applying this  to 

! 

Y
it

2 : 
E(

! 

Y
it

2 ) = Var(Yit) + [E(Yit)]2 = _____________________ 
 
To find E(

! 

Y 
i•

2 ), first note that 
  

 

! 

Y 
i•  = 

! 

1

r
i

µ + T
i
+ "

it( )
t=1

r
i

#
$ 

% 
& 

' 

( 
)  
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  = µ + Ti + 

! 

1

r
i

"
it

t=1

r
i

#
$ 

% 
& 

' 

( 
)  

 
Thus:   E(

! 

Y 
i• ) =  

 
  Var(

! 

Y 
i• ) =  

 
 
 
 
  E(

! 

Y 
i•

2) =  
 
Finally, we get 

 E(SSE) = 

! 

E(Y
it

2
)

t=1

r
i

"
i=1

v

" # r
i
E(Y 

i•

2
)

i=1

v

"  

 
  = 
 
 
 
 
 
 
 
We define MSE = SSE/(n-v) as before, and so E(MSE) = __________ 
 
Thus: 
 
To do inference, we also need an unbiased estimator of  σT

2. To this end, look at E(SST). 
As with the fixed effects model, 
 
 SST = 

! 

r
i
Y 

i•

2

i

" # nY ••

2  

 
Now 

! 

Y ••  =  
 
 = 
 
So E(

! 

Y ••) =  
 
and Var(

! 

Y ••) =  
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Thus E(

! 

Y ••

2) = Var(

! 

Y ••) + E(

! 

Y ••)2 
 
  = 
 
 
Then 
 E(SST) = 

! 

r
i
E(Y 

i•

2
)

i

" # nE(Y ••

2
)  = 

 
   
 
So (defining MST = SST/(v-1) as usual) 
 
 E(MST) =   = 
 
   where c =  
 
Recalling that E(MSE) = σ2, we can calculate 
 
 E([MST – MSE]/c) =  
 
i.e., [MST – MSE]/c is an unbiased estimator of  _________ 
 
Note: 1. If we have a balanced design (all ri = r), then n = vr, and  
  
 c =   
 
 
 
 
2. In general, since the ri’s are positive and sum to n,  
 
 
 
 
Testing Equality of Treatment Effects: 
 
Recall: 

! 

H
0

T : σT
2 = 0  (i.e., T ≡ 0) 

 

! 

H
a

T : σT
2 > 0 

 
If 

! 

H
0

T  is true, then E(MST) = cσT
2 + σ2 = 0 + σ2 = E(MSE), so we expect MST/MSE ≈ 1. 

If 

! 

H
a

T  is true, then E(MST) > E(MSE), so if σT
2 is large enough, we expect MST/MSE 

>1. Thus MST/MSE will be a reasonable test statistic, if it has a known distribution. 
 
Under the model assumptions, the following can be proved: 
 i. SST/( cσT

2 + σ2) ~ χ2(v-1) 



 6 

 
 ii. SSE/ σ2 ~ χ2(n-v) 
 
 iii. SST and SSE are independent random variables 
 
Thus 

 

! 

SST

c"
T

2 +" 2( )(v #1)
SSE

" 2
(n # v)

 ~ F(v-1, n-v). 

 
This fraction can be re-expressed as  

 

! 

MST

MSE

" 2

c"
T

2
+" 2

. 

 
Thus if 

! 

H
0

T  is true, MST/MSE ~ F(v-1, n-v). Thus MST/MSE is indeed a suitable test 
statistic for 

! 

H
0

T . 
 
Moreover, MST and MSE are calculated the same way as in the ANOVA table for fixed 
effects, so we can use the same software routine. 
 
Model checking; 
 
We should check model assumptions as best we can before deciding to proceed to 
inference.  Since the least square fits are the same as for fixed effects, we can form 
standardized residuals and use them for some checks: 
 a. εit ~ N(0, σ2) and are mutually independent – same checks as for fixed effects 
model. 
 b. Independence of the εit’s from the Ti’s – This is not easy to check, so care is 
needed in design and implementation of the experiment. Sometimes unequal variances of 
the εit’s can be a clue to a problem with independence. 
 c. Independence of the Ti’s – Also not checkable by residuals, so care is needed in 
the design and implementation of the experiment. 
 d. Ti ~ N(0, σT

2). Recall that Var(

! 

Y 
i• ) = σT

2 + (1/ri) σ2. So in the case of equal 
sample sizes (balanced design), the 

! 

Y 
i• ’s should all be ≈ N(µ, σT

2 + σ2/r). Thus a normal 
plot of the 

! 

y i•’s should be approximately a straight line; however, if v is small, the 
normal plot may not be informative. 
 
Note: This is an important check, since the procedure is not robust to departures from 
normality of random effects. 
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  ONE RANDOM EFFECT EXAMPLE 
 
A textile mill has a large number of looms. Each loom is supposed to provide the same 
output per minute. To test this assumption, five looms are chosen at random.  Each 
loom’s output is recorded at five different times. 
 
Check the model: Run on Minitab to get residuals and fits. Make model-checking plots: 
 
Standardized residuals vs factor levels and fits: 
 

54321
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Max and min sample standard deviations by level: 0.753 and 1.424 
 
Normal probability plots of standardized residuals and level means: 
 

p-value:   0.948
A-Squared: 0.156

Anderson-Darling Normality Test

N of data: 25
Std Dev: 1
Average: 0.0000014
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p-value:   0.311
A-Squared: 0.346

Anderson-Darling Normality Test

N of data: 5
Std Dev: 0.130690
Average: 13.936
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Analysis of Variance table: 
 
Source      DF         SS         MS       F      P 
Loom         4    0.34160    0.08540    5.77  0.003 
Error       20    0.29600    0.01480 
Total       24    0.63760 
 


