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SPLIT PLOT DESIGNS 

 

Key Features: More than one type of experimental unit 

and more than one randomization. 

 

Typical Use: When one factor is difficult to change. 

 

Example (and terminology):  

 

An agricultural researcher is studying the effects of corn 

variety and irrigation level on corn yields.  

 

Four varieties of corn and three irrigation levels are used.  

 

It’s easy to plant a specified variety of corn wherever told 

to do so. (Thus, variety is an easy-to-change factor.)  

 

However, irrigation is done by large sprinklers that irrigate 

a large area of land. (Thus, irrigation is a difficult-to-

change factor.)  

 

A crossed factorial experiment with just two replications of 

each of the twelve treatment combinations would require 

24 large areas of land.  

 

This is beyond resources available. 
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To get around the problem:  

 

• Use just six plots of land, chosen so that each can be 

irrigated at a set level without affecting the irrigation 

of the others. (These large plots are called the whole 

plots.)  

 

• Randomly assign irrigation levels to each whole plot 

so that each irrigation level is assigned to exactly two 

plots.  (Irrigation is called the whole-plot factor).  

 

• Divide each whole plot into four subplots. (Each 

subplot is called a split plot.)  

 

• Within each whole plot, randomly assign the four corn 

varieties to the four split plots. (Variety is called the 

split-plot factor.)  

 

1. Draw a picture to illustrate the design. 

 

2.What are the two experimental units and the 

corresponding two randomizations? 

 

3. How is this design like a two-way crossed factorial 

design? How are the two designs different? 

 

4. How is this like a randomized complete block design? 

How are the two designs different? 

 

5. Does the split-plot design introduce any possible 

confounding? 
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• Second example: An industrial experimenter is 

studying how the water resistance of wood depends on 

the pretreatment (two types) and the stain (four types). 

It turns out to be very difficult to apply the 

pretreatment to a small wood panel, so instead each 

type of pretreatment is applied to a whole board, the 

board is then cut into four smaller wood panels, and 

one type of stain is applied to each panel. Six whole 

boards are used.  

 

• Give details to make this into a split-plot design.  

 

• Identify whole and split plots and whole-plot and split-

plot factors.  

 

• Is there any confounding? 

 

Note: The book starts with the more complex situation 

where whole plots are within blocks; we will discuss this 

generalization later. 
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Model for Split-Plot Designs 

  

A split-plot experiment can be considered as two 

experiments superimposed:  

 

• One experiment has the whole-plot factor applied to 

the large experimental units (whole plots). 

 

• The other experiment has the split-plot factor applied 

to the smaller experimental units (split plots).  

 

The model will reflect this by including two error terms:  

 

• the whole-plot random error !W
, and  

 

• the split-plot random error !S.  
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Notation: 

• A (with a levels) is the whole-plot factor. 

 

• B (with b levels) is the split-plot factor.  

 

• Each level of A is assigned to l whole plots. (So there 

are al whole plots. In other words, the number of 

experimental units in the first randomization is al.)  

 

• Each level of B is assigned to m split plots. (Thus the 

total number of split plots is bm. In other words, the 

number of experimental units in the second 

randomization is bm. In our examples, each level of B 

is assigned exactly once to each whole plot, so m = 

al.) 

 

Thus,  

• The whole plots are indexed (identified, labeled) by 

pairs of indices iu, where i = 1, … , a; u = 1, … , l.  

 

• The total collection of split plots is indexed by pairs of 

indices jt, j = 1, … , b, t = 1, … , m 

 

• Since the total number of split plots can also be 

calculated as the number of whole plots time the 

number of split plots per whole plot, we see that the 

number of split plots per whole plot is (bm)/(al) 

 

Exercise: What are A, B, a, b, l, and m in the examples? 
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The model equation (Equation 19.2.3 on p. 678) when both 

A and B are fixed factors is given on two lines to 

emphasize the two error terms:  

 

 Yiujt = µ + "i +  !iu
W 

 

 + #j + ("#)ij + !jt(iu)
S 

 

where  

 

i = 1, … , a  u = 1, … , l 

 

  j = 1, … , b  t = 1, … , m; 

 

!iu
W ~ N(0, $W

2), ! jt(iu)
S ~ N(0, $S

2),  

 

!iu
W’s and ! jt(iu)

S’s all mutually independent. 

 

Exercise: Why is the nesting notation in the subscript of the 

split-plot error used? 
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 In our examples (the special case where each level of 

B is assigned exactly once to each whole plot), the model 

can be simplified a little. In this special case 

• m = al 

 

• if we know i (the level of A) and u (the 

replication number of the level of A), we have 

narrowed down to a specific whole plot  

 

• if we also know j (the level of B), we have 

narrowed down to a specific split plot 

 

Thus we do not need t, and can write the model as 

 

 Yiuj = µ + "i +  !iu
W 

 + #j + ("#)ij + !iuj
S 

where  

i = 1, … , a; u = 1, … , l; j = 1, … , b;  

 

!iu
W ~ N(0, $W

2), ! iuj
S ~ N(0, $S

2),  

 

!iu
W’s and ! iuj

S’s all mutually independent. 
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Note: The design and model we are working with are 

actually the simplest form of split-plot designs. There are 

many variations. Examples: 

 

• The more general form discussed in the book also has 

blocks containing the whole plots. (More on this later.)  

 

• Random-effects split-plot designs 

 

• Mixed-effects split-plot designs 

 

•  Split-plot designs involving more than two factors.  

 

• Split-split-plot designs, where each split-plot is further 

divided into subplots. 
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Analysis of Split-Plot Designs 

 

For now, we will discuss only the two fixed-factor, no 

block model described above:  

 

 Yiujt = µ + "i +  !iu
W 

 

  + #j + ("#)ij + !jt(iu)
S 

 

where 

 

i = 1, … , a  u = 1, … , l 

 

  j = 1, … , b  t = 1, … , m; 

 

!iu
W ~ N(0, $W

2), ! jt(iu)
S ~ N(0, $S

2),  

 

!iu
W’s and ! jt(iu)

S’s all mutually independent. 

 

The model can be fit by least squares. 

 

Model checking: Since there are two error terms in the 

model, two kinds of residuals need to be checked, the WP 

(whole plot) and SP (split plot) residuals. To calculate 

them, first calculate the residuals in the usual way 

(response values minus fitted values). Then 

• WP residuals are obtained by averaging residuals 

corresponding to each whole plot. 

• SP (split plot) residuals are obtained by subtracting 

WP residuals from residuals. 
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Now make the following model-checking plots: 

 

• Normal plot of SP residuals (to check normality of 

split-plot errors) 

 

• Normal plot of WP residuals (to check normality of 

whole-plot errors) 

 

• Plot SP residuals against fitted values (to check 

constant variance for SP errors) 

 

• Plot WP residuals against the average fitted value for 

the corresponding whole plot (to check constant 

variance for WP errors) 

 

• Plot WP residuals against SP residuals (to check 

independence of WP and SP errors) 

 

• Plot residuals against any other variable available (to 

check for possible violations of independence).  
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As suggested by the form of the model, the analysis 

combines two separate analyses:  

 

• the whole plot analysis, and  

 

• the split-plot analysis.  

 

The idea: Whole plots act like blocks for the split plot 

analysis.  

 

The sum of squares for whole plots, ssW, is calculated in a 

similar fashion to the sum of squares for blocks in a 

randomized complete block design.  

 

The whole plot error sum of squares is then  

 

ssEW = ssW – ssA. 

 

The split plot error sum of squares is 

 

 ssES = sstot – ssW –ssB – ssAB. 

 

Each sum of squares has an associated degree of freedom.  

 

Mean squares are defined as sums of squares divided by 

degrees of freedom.  
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The test statistics are: 

   

Null hypothesis  Test 

Statistic 

H0
A: No effect of A 

beyond interaction 

msA/msEW 

H0
B: No effect of B 

beyond interaction 

msB/msES 

H0
AB: No interaction msAB/msES 

 

 

To run on Minitab and many other programs, use the 

following trick:  

 

• Create a new variable (usually called W or WP) that 

indicates which whole plot each observation belongs 

to. (Use 1, 2, … , al to label the whole plots.)  

 

• In General Linear Model, declare this variable 

random.   

 

• In specifying factors, indicate that this factor is nested 

in A (the whole plot factor).   
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Example: In the experiment studying the effect of 

pretreatment and stain on water resistance, the data 

(including W) are as shown: 

 

 

 

pretreat stain resist W 

2 2 53.5 4 

2 4 32.5 4 

2 1 46.6 4 

2 3 35.4 4 

2 4 44.6 5 

2 1 52.2 5 

2 3 45.9 5 

2 2 48.3 5 

1 3 40.8 1 

1 1 43.0 1 

1 2 51.8 1 

1 4 45.5 1 

1 2 60.9 2 

1 4 55.3 2 

1 3 51.1 2 

1 1 57.4 2 

2 1 32.1 6 

2 4 30.1 6 

2 2 34.4 6 

2 3 32.2 6 

1 1 52.8 3 

1 3 51.7 3 

1 4 55.3 3 

1 2 59.2 3 

In Minitab, use General Linear Model. 

 

Response: resist 

 

Model: pretreat W( pretreat) stain pretreat* stain 

 

Random:  W 

 

 

The output is: 
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General Linear Model: resist versus pretreat, 
stain, W 

 
 
Factor        Type Levels Values  

pretreat     fixed      2 1 2 

W(pretreat) random      6 1 2 3 4 5 6 

stain        fixed      4 1 2 3 4 

 

Analysis of Variance for resist, using Adjusted SS for Tests 

 

Source           DF     Seq SS     Adj SS     Adj MS       F      P 

pretreat          1     782.04     782.04     782.04    4.03  0.115 

W(pretreat)       4     775.36     775.36     193.84   15.25  0.000  

stain             3     266.00     266.00      88.67    6.98  0.006 

pretreat*stain    3      62.79      62.79      20.93    1.65  0.231 

Error            12     152.52     152.52      12.71 

Total            23    2038.72   

 

 

Note:  

1. Ignore the P-value for W. 

 

2. This does not work with Minitab 10. 

 

3. ssEW is in the line W(pretreat). 

 

4. ssES is in the line Error 

 

5. Check that the sums of squares add as indicated above. 

 

6. Check that the test ratios are as they should be. 

 

7. Note that ssEW is much larger than ssES. This is typical. 

Why? 
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Interpret the output: 

 

 

 

 

 

Note: If we don't designate W as random, we get different 

output: 
 

General Linear Model: resist versus pretreat, 
stain, W 
 

 
Factor        Type Levels Values  

pretreat     fixed      2 1 2 

W(pretreat)  fixed      6 1 2 3 4 5 6 

stain        fixed      4 1 2 3 4 

 

Analysis of Variance for resist, using Adjusted SS for Tests 

 

Source           DF     Seq SS     Adj SS     Adj MS       F      P 

pretreat          1     782.04     782.04     782.04   61.53  0.000 

W(pretreat)       4     775.36     775.36     193.84   15.25  0.000 

stain             3     266.00     266.00      88.67    6.98  0.006 

pretreat*stain    3      62.79      62.79      20.93    1.65  0.231 

Error            12     152.52     152.52      12.71 

Total            23    2038.72   

 

 

What is different? How do we know the first method is the 

one we want?  
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Split Plot Designs with Blocks 

 

The split plot model we have discussed is a special case 

(namely, just one block) of a more general split plot design, 

where the whole plots are themselves nested within blocks.  

 

If the randomization is such that each level of A appears 

exactly once per block and each level of B appears exactly 

once per whole plot, the model for this design can be 

expressed as  

 

(Equation 19.2.2 in Dean-Voss) 

 

 Yhij = µ + %h +  "i +  !i(h)
W

 

    

 + #j + ("#)ij + !j(hi)
S 

where  

h = 1, … , s; i = 1, … , a; j = 1, … , b 

 

!i(h)
W ~ N(0, $W

2), ! j(hi)
S ~ N(0, $S

2),  

 

!i(h)
W’s and ! j(hi)

S’s all mutually independent. 

 

(%h is the effect of the hth block.)  
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Sums of squares are as for the case previously discussed, 

except now 

 

 ssEW = ssW - ss% - ssA. 

 

The appropriate test statistics are just as before: 

 

Null hypothesis  Test 

Statistic 

H0
A: No effect of A 

beyond interaction 

msA/msEW 

H0
B: No effect of B 

beyond interaction 

msB/msES 

H0
AB: No interaction msAB/msES 
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Example: (The oats example on p. 681)  

 

• The experimental area was divided into s = 6 blocks. 

 

•  Each block was subdivided into a = 3 whole plots.  

 

• 3 varieties of oats (factor A) were sown on whole plots 

according to a randomized complete block design (so 

every variety appeared in every block exactly once).  

 

• Each whole plot was further divided into b = 4 split 

plots. 

 

•  4 levels of manure were applied to the split plots 

according to a randomized complete block design (so 

each level of B appeared in each whole plot exactly 

once). 

 

 

To run on Minitab, enter for model: 

 

BLOCK  A WP( BLOCK ) B A*B    

 

Specify BLOCK as random. (Minitab then automatically 

specifies WP as random, since it is nested in BLOCK. In 

some older versions, if you try to specify WP as random, 

you may get an error message.) 

 

The output is: 
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General Linear Model: Y versus BLOCK, A, B, WP 
 
 
Factor      Type Levels Values  

BLOCK     random    6   1 2 3 4 5 6 

A          fixed    3   0 1 2 

WP(BLOCK) random   18   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 

17 18 

B          fixed    4   0 1 2 3 

 

Analysis of Variance for Y, using Adjusted SS for Tests 

 

Source     Model DF   Reduced DF     Seq SS 

BLOCK             5            5    15875.3  

A                 2            2     1786.4  

WP(BLOCK)        12           10+    6013.3  

B                 3            3    20020.5  

A*B               6            6      321.8  

Error            43           45     7968.8  

Total            71           71    51985.9  

 

+ Rank deficiency due to empty cells, unbalanced nesting,collinearity, 

or an undeclared covariate.  

  No storage of results or further analysis will be done. 
 

The last comment essentially means that we can’t make 

residual plots and need to do the remaining calculations  by 

hand. 

 

The “reduced degrees of freedom” are what we need.  
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Calculating test statistics: 

 

For interaction:  

 

msAB/msES = (ssAB/6)/(ssES/45)  

 

= (321.8/6)/(7968.8/45)   

 

= 53.63/177.08 = 0.30 

 

  For an F(6, 45) distribution, this gives p-value  

 

   1 – 0.0664 = .9336. 

 

  This is consistent with no interaction. 

 

 For level of manure (factor B):  

 

msB/ msES = (ssAB/3)/(ssES/45)  

 

= (20020.5/3)/(7968.8/45)   

 

= 6673.5/177.08 = 37.69 

 

  For an F(3,45) distribution, this gives p-value  

 

   1 – 1.0000 = 0.0000 (to four decimal places) 

 

  This gives strong evidence that the level of   

  manure makes a difference. 
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 For variety of oats (factor A): 

 

  msA/msEW = (ssA/2)/(ssWP(BLOCK)/10) 

 

   = (1786.4/2)/(6013.3/10)  

 

   = 893.18/601.33 = 1.49. 

 

  For an F(2,10) distribution, this gives p-value   

 

   1 – 0.7286 = .2714. 

 

  This is consistent with no effect of variety. 

 

A further analysis would involve contrasts;  

 see pp. 683 – 684. 

 

Note that msES =  177.08 (the estimate of error variance for 

whole plots) is noticeably smaller than msEW = 601.33 (the 

estimate of error variance for split plots), as is typical of 

split plot designs. 

 

 


