CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS (Section 17.3.5)

1

These play the role for random effects that confidence intervals for contrasts play for fixed effects.

Confidence intervals for σ^2 : Constructed just as for fixed effects; see Section 3.4.6 or the class notes *Choosing Sample Sizes*.

Confidence intervals involving σ_T^2 :

Three types of are of interest:

- For σ_T^2
- For σ_T^2/σ^2
- For $\sigma_T^2/(\sigma_T^2 + \sigma^2)$

The first cannot be done exactly, so we'll take that last.

Confidence intervals for σ_T^2/σ^2 :

We use the fact (see notes *Testing for Treatment Effect as a Proportion of Error Variance*) that

$$\frac{MST/\left(c\sigma_T^2 + \sigma^2\right)}{MSE/\left(\sigma^2\right)} \sim \text{F(v-1, n-v)},$$

where c is a certain constant defined in terms of n,v, and the r_i ; c = r if the design is balanced) (See notes *Random Effects Models* or Section 17.3)

If we want a $(1-\alpha)100\%$ CI for σ_T^2/σ^2 , take

$$f_1 = F(v-1, n-v, 1-\alpha/2)$$

(so that there is area $\alpha/2$ to the left of f_1 in the $F(v-1, n-v)$ distribution), and

$$f_2 = F(v-1, n-v, \alpha/2)$$
 (so that there is area $\alpha/2$ to the right of f_2 in the $F(v-1, n-v)$ distribution).

[Picture!]

Then

Prob
$$(f_1 \le \frac{\frac{MST}{(c\sigma_T^2 + \sigma^2)}}{\frac{MSE}{(\sigma^2)}} \le f_2) = 1 - \alpha$$

Equivalently:

Prob
$$(f_1 \le [MST/MSE] [\sigma^2/(c\sigma_T^2 + \sigma^2)] \le f_2)$$

= 1- α ,

Working with the left inequality:

$$(c{\sigma_T}^2\!+\sigma^2)\!/\!\sigma^2\!\leq\!(MST/MSE)(1/f_1)$$

$$c(\sigma_T^2/\sigma^2) + 1 \le (MST/MSE)(1/f_1)$$

$$c(\sigma_T^2/\sigma^2) \le (MST/MSE)(1/f_1) - 1$$

Working with the right inequality: is equivalent to

$$(MST/MSE)(1/f_2) \le (c\sigma_T^2 + \sigma^2)/\sigma^2$$

$$= c(\sigma_T^2/\sigma^2) + 1$$

$$(MST/MSE)(1/f_2) - 1 \le c(\sigma_T^2/\sigma^2)$$

So

3

Prob ((1/c)[(MST/MSE)(1/f₂) - 1]
$$\leq \sigma_T^2/\sigma^2$$

 \leq (1/c)[(MST/MSE)(1/f₁) - 1]) = 1 - α .

Thus desired confidence interval has left endpoint

$$(1/c)[(msT/msE)(1/f_2) - 1]$$

and right endpoint

$$(1/c) (msT/msE)(1/f_1) - 1)$$

Here, "(a, b) is a 95% confidence interval for σ_T^2/σ^2 " Means:

Note: Conceivably the left hand endpoint could be less than 0, which is unrealistic. If it is < 0, do *not* give in to the temptation to replace it by zero; that would give the false impression of a smaller confidence interval than warranted.

Example: Use the loom data to find a 95% confidence interval for σ_T^2/σ^2 .

Confidence intervals for $\sigma_T^2/(\sigma_T^2 + \sigma^2) = the$ proportion of the total variance if the response attributable to the treatment level:

Such confidence intervals are readily obtained from confidence intervals for σ_T^2/σ^2 as follows.

Divide both numerator and denominator of $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ by σ^2 to obtain

$$\sigma_{T}^{2}/(\sigma_{T}^{2}+\sigma^{2}) = \frac{\sigma_{T}^{2}/\sigma^{2}}{\left(\sigma_{T}^{2}/\sigma^{2}\right)+1} = f\left(\sigma_{T}^{2}/\sigma^{2}\right),$$
where $f(x) = x/(x+1) = \frac{1}{1+\frac{1}{x}}$.

From the last formula for f(x), we can see that f(x) is an increasing function of x. i.e., $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ is an increasing function of σ_T^2/σ^2 .

Thus if (a,b) is a (1- α)100% confidence interval for σ_T^2/σ^2 , then (f(a), f(b)) = (a/(a + 1), b/(b + 1)) is a (1- α)100% confidence interval for $\sigma_T^2/(\sigma_T^2 + \sigma^2)$.

Note: $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ is sometimes called the "population intraclass correlation coefficient"

Caution: The phrase "intraclass correlation coefficient" is also used to refer to other things.

6

Example: With the loom data, find a 95% confidence interval for $\sigma_T^2/(\sigma_T^2 + \sigma^2)$.

Confidence intervals for σ_T^2 : There is no exact method. There are several approximate methods. Here's one. It's useful if σ_T^2 is not too small, and is adaptable to more complicated models.

Recall that U = (1/c)(MST - MSE) is an unbiased estimator of σ_T^2 . If we knew its distribution, we could use that to get confidence intervals for σ_T^2 in the usual way.

However, U does not have a tractable distribution.

But it is true that

U/
$$\sigma_T^2 \approx \chi^2(x)/x$$
, where

$$x \approx \frac{(msT - msE)^2}{(msT)^2/(v-1)^+ (msE)^2/(n-v)}$$

(Note: This formula is given correctly on p. 605 of the text, but incorrectly on p. 600.)

x from this formula is not usually an integer, so we need to interpret degrees of freedom in the χ^2 distribution as the parameter in a formula for the pdf. (This is analogous to the two-sample, unequal variance t-test.)

Thus (Draw a picture!)

P(
$$\chi^2(x, 1-\alpha/2) \prec xU/\sigma_T^2 \prec \chi^2(x, \alpha/2)$$
) $\approx 1-\alpha$,

where \prec means "is less than or approximately equal to", and $\chi^2(x,\beta)$ is the value with proportion β of the $\chi^2(x)$ distribution to its *right*.

The left and right approximate inequalities are, respectively, equivalent to

$$\sigma_T^2 \prec xU/\chi^2(x, 1-\alpha/2)$$
 and $\sigma_T^2 \succ xU/\chi^2(x, \alpha/2)$.

Thus if

$$u = (1/c)(msT - msE)$$

(which is our estimate for σ_T^2),

then

$$(xu/\chi^{2}(x, \alpha/2), xu/\chi^{2}(x, 1-\alpha/2))$$

is an approximate $(1-\alpha)100\%$ confidence interval for σ_T^2 .

Example: With the loom data, find a 95% confidence interval for σ_T^2 .