CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS
 (Section 17.3.5)

These play the role for random effects that confidence intervals for contrasts play for fixed effects.

Confidence intervals for $\boldsymbol{\sigma}^{\mathbf{2}}$: Constructed just as for fixed effects; see Section 3.4.6 or the class notes Choosing Sample Sizes.

Confidence intervals involving $\sigma_{T}{ }^{2}$:
Three types of are of interest:

- For $\sigma_{T}{ }^{2}$
- For $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{\mathbf{2}}$
- For $\sigma_{T}^{2} /\left(\sigma_{T}^{2}+\sigma^{2}\right)$

The first cannot be done exactly, so we'll take that last.

Confidence intervals for $\sigma_{T}{ }^{2} / \sigma^{2}$:

We use the fact (see notes Testing for Treatment Effect as a Proportion of Error Variance) that

$$
\frac{M S T /\left(c \sigma_{T}^{2}+\sigma^{2}\right)}{M S E /\left(\sigma^{2}\right)} \sim \mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v}),
$$

where c is a certain constant defined in terms of n, v, and the $r_{i} ; c=r$ if the design is balanced) (See notes Random Effects Models or Section 17.3)

If we want a $(1-\alpha) 100 \% \mathrm{CI}$ for $\sigma_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}$, take

$$
f_{1}=F(v-1, n-v, 1-\alpha / 2)
$$

(so that there is area $\alpha / 2$ to the left of f_{1} in the $\mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v})$ distribution), and

$$
\mathrm{f}_{2}=\mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v}, \alpha / 2)
$$

(so that there is area $\alpha / 2$ to the right of f_{2} in the $\mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v})$ distribution).

[Picture!]

Then

$$
\operatorname{Prob}\left(\mathrm{f}_{1} \leq \frac{M S T /\left(c \sigma_{T}^{2}+\sigma^{2}\right)}{M S E /\left(\sigma^{2}\right)} \leq \mathrm{f}_{2}\right)=1-\alpha
$$

Equivalently:

$$
\begin{aligned}
& \operatorname{Prob}\left(\mathrm{f}_{1} \leq[\mathrm{MST} / \mathrm{MSE}]\left[\sigma^{2} /\left(\mathrm{co}_{\mathrm{T}}^{2}+\sigma^{2}\right)\right] \leq \mathrm{f}_{2}\right) \\
& \quad=1-\alpha,
\end{aligned}
$$

Working with the left inequality:

$$
\begin{aligned}
& \left(\boldsymbol{c}_{\mathrm{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right) / \boldsymbol{\sigma}^{2} \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right) \\
& \mathrm{c}\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}\right)+1 \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right) \\
& \mathrm{c}\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}\right) \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right)-1
\end{aligned}
$$

Working with the right inequality: is equivalent to

$$
\begin{aligned}
&(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right) \leq\left(\mathrm{c} \boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right) / \boldsymbol{\sigma}^{2} \\
&=\mathrm{c}\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}\right)+1 \\
&(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right)-1 \leq \mathrm{c}\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& \text { Prob }\left((1 / \mathrm{c})\left[(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right)-1\right] \leq \boldsymbol{\sigma}_{\mathrm{T}}^{2} / \boldsymbol{\sigma}^{2}\right. \\
& \left.\quad \leq(1 / \mathrm{c})\left[(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right)-1\right]\right)=1-\alpha .
\end{aligned}
$$

Thus desired confidence interval has left endpoint

$$
(1 / \mathrm{c})\left[(\mathrm{msT} / \mathrm{msE})\left(1 / \mathrm{f}_{2}\right)-1\right]
$$

and right endpoint

$$
\left.(1 / \mathrm{c})(\mathrm{msT} / \mathrm{msE})\left(1 / \mathrm{f}_{1}\right)-1\right)
$$

Here, "(a, b) is a 95% confidence interval for $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2} / \boldsymbol{\sigma}^{2}$ " Means:

Note: Conceivably the left hand endpoint could be less than 0 , which is unrealistic. If it is <0, do not give in to the temptation to replace it by zero; that would give the false impression of a smaller confidence interval than warranted.

Example: Use the loom data to find a 95% confidence interval for $\sigma_{T}{ }^{2} / \sigma^{2}$.

Confidence intervals for $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)=$ the proportion of the total variance if the response attributable to the treatment level:

Such confidence intervals are readily obtained from confidence intervals for $\sigma_{T}{ }^{2} / \sigma^{2}$ as follows.

Divide both numerator and denominator of $\sigma_{\mathrm{T}}{ }^{2} /\left(\sigma_{\mathrm{T}}{ }^{2}+\sigma^{2}\right)$ by σ^{2} to obtain

$$
\begin{aligned}
\sigma_{\mathbf{T}}^{2} /\left(\sigma_{\mathbf{T}}^{2}+\sigma^{2}\right)=\frac{\sigma_{T}^{2} / \sigma^{2}}{\left(\sigma_{T}^{2} / \sigma^{2}\right)+1}=f\left(\sigma_{T}^{2} / \sigma^{2}\right), \\
\text { where } \mathrm{f}(\mathrm{x})=\mathrm{x} /(\mathrm{x}+1))=\overline{1+\frac{1}{x}} .
\end{aligned}
$$

From the last formula for $f(x)$, we can see that $f(x)$ is an increasing function of x. i.e., $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} /\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right)$ is an increasing function of $\sigma_{T}{ }^{2} / \sigma^{2}$.

Thus if (a, b) is a (1- α) 100% confidence interval for $\sigma_{T}^{2} / \sigma^{2}$, then $(\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{b}))=(\mathrm{a} /(\mathrm{a}+1), \mathrm{b} /(\mathrm{b}+1))$ is a (1- α) 100% confidence interval for $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$.

Note: $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$ is sometimes called the "population intraclass correlation coefficient"

Caution: The phrase "intraclass correlation coefficient" is also used to refer to other things.

Example: With the loom data, find a 95% confidence interval for $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$.

Confidence intervals for $\sigma_{T}{ }^{2}$: There is no exact method. There are several approximate methods. Here's one. It's useful if $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}$ is not too small, and is adaptable to more complicated models.

$$
\text { Recall that } \mathrm{U}=(1 / \mathrm{c})(\mathrm{MST}-\mathrm{MSE}) \text { is an }
$$ unbiased estimator of $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}$. If we knew its distribution, we could use that to get confidence intervals for $\sigma_{T}{ }^{2}$ in the usual way.

However, U does not have a tractable distribution.

But it is true that

$$
\begin{aligned}
& \mathrm{U} / \boldsymbol{\sigma}_{\mathrm{T}}^{2} \approx \chi^{2}(\mathrm{x}) / \mathrm{x}, \text { where } \\
& \\
& \qquad \mathrm{x} \approx \frac{(m s T-m s E)^{2}}{(m s T)^{2} /(v-1)^{+}(m s E)^{2} /(n-v)}
\end{aligned}
$$

(Note: This formula is given correctly on p. 605 of the text, but incorrectly on p .600 .)
x from this formula is not usually an integer, so we need to interpret degrees of freedom in the χ^{2} distribution as the parameter in a formula for the pdf. (This is analogous to the two-sample, unequal variance t-test.)

Thus (Draw a picture!)

$$
\mathrm{P}\left(\chi^{2}(\mathrm{x}, 1-\alpha / 2) \prec \mathrm{xU} / \sigma_{\mathrm{T}}^{2} \prec \chi^{2}(\mathrm{x}, \alpha / 2)\right) \approx 1-\alpha,
$$

where \prec means "is less than or approximately equal to", and $\chi^{2}(x, \beta)$ is the value with proportion β of the $\chi^{2}(\mathrm{x})$ distribution to its right.

The left and right approximate inequalities are, respectively, equivalent to

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\mathrm{T}}^{2} \prec \mathrm{xU} / \chi^{2}(\mathrm{x}, 1-\alpha / 2) \quad \text { and } \\
& \boldsymbol{\sigma}_{\mathrm{T}}^{2} \succ \mathrm{xU} / \chi^{2}(\mathrm{x}, \alpha / 2) .
\end{aligned}
$$

Thus if

$$
\begin{aligned}
\mathrm{u}= & (1 / \mathrm{c})(\mathrm{msT}-\mathrm{msE}) \\
& \left(\text { which is our estimate for } \boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}\right),
\end{aligned}
$$

then

$$
\left(\mathrm{xu} / \chi^{2}(\mathrm{x}, \alpha / 2), \mathrm{xu} / \chi^{2}(\mathrm{x}, 1-\alpha / 2)\right)
$$

is an approximate ($1-\alpha$) 100% confidence interval for $\sigma_{\mathrm{T}}{ }^{2}$.

Example: With the loom data, find a 95% confidence interval for $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}$.

