2

ESTIMATING VARIANCE COMPONENTS FOR RANDOM EFFECTS (Sections 17.6.4 and 17.6.5)

Unbiased estimators: Two examples will illustrate the method.

- I. In the two-way complete model:
- 1. Recall that $E(MSE) = \sigma^2$, so MSE is an unbiased estimator for σ^2 .
- 2. From E(MSAB) = $r\sigma_{AB}^2 + \sigma^2$ and E(MSE) = σ^2 , we get

$$E\left(\frac{MSAB - MSE}{r}\right) = \sigma_{AB}^{2}$$

3. From the above and E(MSA) = $br\sigma_A^2 + r\sigma_{AB}^2 + \sigma^2$, we get

$$E\left(\frac{MSA - MSAB}{br}\right) = \sigma_{A}^{2}.$$

4. Similarly,
$$E\left(\frac{MSB - MSAB}{ar}\right) = \sigma_B^2$$

II. Find an unbiased estimator of $\sigma_B^{\ 2}$ in the model with model equation

$$Y_{ijkt} = \mu + A_i + B_j + C_k + (AB)_{ij} + (BC)_{jk} + \epsilon_{ijt}$$

4

Confidence intervals:

First, use the method above to obtain an unbiased estimator U of \mathcal{O}_*^2 (where * = A, B, AB, etc.).

U will be some linear combination of mean squares – say $U = \sum k_i(MS)_i$.

Let (ms)_i be the value of (MS)_i from the sample obtained in the experiment.

Let x_i be the degrees of freedom of $(MS)_i$.

Then it can be proved mathematically (using model assumptions) that $xU/\sigma_*^2 \approx \chi^2(x)$, where

$$x = \frac{\left(\sum k_i (ms)_i\right)^2}{\sum k_i^2 (ms)_i^2 / x_i}.$$

We can use this, following the method we used to find an approximate CI for σ_T^2 in the one-random effects model, to get an approximate CI for σ_*^2 .

Example: With the fiber breaking strength data, find an approximate 95% CI for σ_A^2 , where A is operator.

We have $E([MSA-MSAB]/(4.2)] = \sigma_A^2$, so

$$U = (1/8)MSA - (1/8)MSAB$$

Then ...

Questions:

Comment on the size of this CI. Is it symmetric about the point estimate?

5

Variance components on Minitab: Run the fiber data, but clicking "Storage" (or "Options") and "Display expected mean squares."

Source				Expected Mean Square
		component	term	(using unrestricted
model)				
1	Operator	9.0903	3	(4) + 2(3) + 8(1)
2	Machine	-0.5486	3	(4) + 2(3) + 6(2)
3	Operator*Machine	1.8264	4	(4) + 2(3)
4	Error	3.7917		(4)

- a. Note "Variance components" does the value for Operator agree with the above calculation?
- b. Note the variance component for Machine. Is this good or bad?

What does this have to do with random variability?

How does this relate to the p-value in the output?

c. Where does most of the variance come from?

d. Recall the hypothesis tests:

For Operator and Machine – denominator was MSAB – item 3.

For Operator*Machine – denominator was MSE – item 4.

e. The last column contains a shorthand for the expected mean squares.

For example, recall that in this example,
$$E(MSA) = br\sigma_A^2 + r\sigma_{AB}^2 + \sigma^2$$
, $r = 2$, $a = 3$, and $b = 4$.

Read off E(MSB) from the shorthand.