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MIXED MODELS (Sections 17.7 – 17.8) 
 
Example: Suppose that in the fiber breaking strength example, the four machines used 
were the only ones of interest, but the interest was over a wide range of operators, and the 
operators were chosen at random. 
 
This would be an example of a mixed model: a model including both fixed and random 
factors. 
 
The Two-Factor Mixed Model There are two factors. One (A) is fixed, the other (B) 
random. There are two versions of the two-factor model commonly used. Both have the 
same model equation, namely 
 Yijt = µ + αi +Bj + (αB)ij + εijt, 
where µ  and αi are constants, and Bj, (αB)ij, and εijt are random variables. However, the 
conditions on the random variables differ according to the version of the model. 
 
I) In the unrestricted model, interactions are treated as in the random effects model: 
 Each Bi ~  N(0, σB

2) 
 Each (αB)ij ~  N(0, σAB

2) Each εijt ~ N(0, σ2) 
 The Bj’s, (αB)ij’s, and εit’s are all mutually independent random variables. 
 
II) The restricted model requires some intuition building. To see the idea, start with the 
cell-means model Yit = µ + τi + εit.  Recall that, in order to fit this model by least squares, 
we need an additional condition. A natural one, if we think of µ as an overall mean and 
the τi’s as deviations from it, is 
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i#  = 0 as part of the model, to indicate the interpretation of µ and the τi’s 

that we have in mind. (In fact, some people do include this as part of the model.) The 
restricted model takes this interpretation for both the fixed and mixed interaction effects:  

It includes as part of the model the restrictions 

! 

"
i

i=1

a

#  = 0 (i.e., α• = 0) and 

! 

("B) ij
i=1

a

#  = 0 

(i.e., (αB)•j = 0) for each level j of B. Note that in both cases, the sum is over i – that is, 
over the fixed effects. So the assumptions for the restricted model, in addition to the 
model equation, are: 
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 iii) Bj ~ N(0, σB
2)  iv) εijt ~ N(0, σ2) 

 v) (αB)ij ~ N(0,
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a
) (Note: The messy-looking expression for the variance 

is just a rescaling convention that makes later formulas less messy.) 
 
 vi) The Bj’s and εijt’s are all mutually independent, and independent of the 
(αB)ij’s 
 
 vii) The (αB)ij’s and (αB)iq’s are independent (or at least uncorrelated) for j ≠ q. 



 2 

Note:  (ii) implies (details left to the student) that Cov((αB)ij, (αB)pj) = - σAB
2/a for i ≠ p. 

(i.e., for the same level of B, the interaction effects corresponding to different levels of A 
are negatively correlated.) 
 
Which Model to Use?  

• Some people have default preferences, as do most software packages. 
• But it’s sensible to ask: Does one model fit the situation better than the other? If 

so, use it! 
• One criterion sometimes used: A “limited resource” situation is likely to produce 

negatively correlated interaction for different A-levels of the same B-level – so 
the restricted model will reflect this. 

 
Example: Comparing growth of two species of plants -- -so species is a fixed factor with 
a = 2. Suppose the plot in which the plants are grown is of interest as a random factor.  
Thus b plots are randomly selected. Each plot is divided into 2r experimental units. 
Species are randomly assigned to experimental units so that each species is assigned to r 
experimental units in each plot. (Thus we have a crossed, completely randomized 
design.) The plants are sown, grown a specified amount of time, harvested, dried, and 
weighed. Dry weight is the response. 
 Since resources (nutrients, water, space) in each plot are limited, we expect 
negative correlations between the final weights of plants in each plot. Thus a restricted 
model might be better than an unrestricted model here. 
 
Analysis of Mixed Model Experiments The basic idea follows along the lines of the 
methods for developing tests for random effect models, but some of the expected mean 
squares will be different. An overview of the details: 
 We can fit by least squares and use the fits to obtain the mean squares. For 

example, with a balanced design, we will get SSA = 
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 Recall that with the one-way random effect model, to calculate E(SSA) (from 
which we then calculated E(MSA)), we used the equation E(Z2) = Var(Z) + [E(Z)]2 to 
calculate E(Yi•

2) and E(Y••
2). We use the same idea here, but the results are messier. The 

reason is that, whereas in the one-way random effects model, E(Yit) = µ, in the mixed 
effects model, E(Yijt) = µ + αi .  Consequently, [E(Yi••)]

2 and [E(Y••)]
2 will involve terms 

that are quadratic (i.e., degree two polynomials) in the αi’s. 
 
For the unrestricted model, we will get: 
 E(MSA) = Q(A) + rσAB

2 + σ2 (where Q(A) denotes a quadratic in the αi’s) 
 E(MSB) = arσB

2 +  rσAB
2 + σ2 

 E(MSAB) = rσAB
2 + σ2 

 E(MSE) = σ2 
(Note that the last three expected mean squares are the same as in the two-way complete 
random model, but E(MSA) is different.) 
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Hypothesis tests for the unrestricted model:  
 
Fixed effect: Since A (and no other factor) is fixed, the “main effects” hypotheses for A 
are  
 H0

A: All αi’s are zero  vs Ha
A: At least one αi ≠ 0. 

It turns out that when H0
A is true, Q(A) = 0, so that E(MSA) = rσAB

2 + σ2 = E(MSAB). 
The rest of the theory goes over to give MSA/MSAB ~ F(dfA, dfAB) as a suitable test 
statistic.  
 
Random effect: The hypotheses corresponding to H0

B and H0
AB are exactly the same as for 

the two-way complete random model. Since the expected mean squares for B, AB, and E 
are the same as in that model, the test statistics are also the same for the mixed model as 
for the random complete model. 
 
For the restricted model, the results are similar (but remember that the interpretation of  
σAB

2 is different).  
 

These ideas and results generalize to other mixed models. In particular, E(MS*) will be 
as for the corresponding random effects model, except that whenever a fixed effect factor 
or an interaction involving only fixed effects would occur, there is a quadratic in 
appropriate fixed effect and their interactions instead of a σ--

2 term. 
 
Example: For the complete three-way model with two fixed factors A and C and one 
random factor B, we get E(MSA) = Q(A,AC) + rcσAB

2 + rσABC
2 + σ2, where Q(A,AC) is 

a quadratic polynomial in the αi’s and the (αγ)i’s. 
 
For details on the expected mean squares, etc., see Section 17.8.2.  
 
As with random effects, in some cases there is no suitable single MS for the denominator 
of the test statistic, so we need to use linear combinations of mean squares and an 
approximate F test. However, modern software can do much of the detailed calculations 
for us – we need to focus our attention on selecting an appropriate model and interpreting 
the output carefully. 
 
Confidence Intervals 
 
Confidence intervals for contrasts of fixed effects are calculated as in fixed effects 
models, except that the denominator used in the corresponding hypothesis test (and its 
degrees of freedom) must be used instead of MSE (and its degrees of freedom). For 
example, in a two-way mixed model with fixed factor A, to find confidence intervals for 
contrasts in the αi’s, use MSAB and dfAB instead of MSE and dfE. 
 
Confidence intervals for variance components for random effects or interactions 
involving random effects are calculated just as for random effects models, but using just 
the random parts of the model.  


