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CHOOSING SAMPLE SIZES (See Sections 3.6, 3.4.6) 
 
Several things need to be balanced in deciding how many observations to take on each 
treatment in an experiment. Primary among them are the cost of each additional 
observation, the budget available, the objectives of the experiment, the design of the 
experiment (and method of analysis), and the number of observations needed to detect 
differences of interest. We will focus on the latter; in a real experiment, the results of 
these calculations may necessitate either reducing the objectives of the experiment or 
increasing the budget.   
 
The method given here will be based on the idea of power of a statistical test: In general 
terms, the power of a test is the probability of rejecting Ho under a specified condition. 
For example, for a one-sample t-test for the mean of a population, with null hypothesis 
Ho: µ = 100, you might be interested in the probability of rejecting Ho when µ ≥ 105, or 
when |µ - 100| > 5, etc. In most real-life situations, there are reasonable such conditions. 
For example, if you can only measure the response to within 0.1 units, it doesn't really 
make sense to worry about false rejection when the actual value is within less than that 
amount of the value in the null hypothesis. Or some differences may be of no practical 
import -- for example, a medical treatment that extends life by 10 minutes is probably not 
worth it, but if it extends life by a year, it might be. 
 
For an Analysis of Variance test, the power of the test at Δ, denoted π(Δ), is the 
probability of rejecting Ho when at least two of the treatments differ by Δ or more. The 
power π(Δ) depends on the sample size, the number of treatments v, the significance level 
α of the test, and the (population) error variance σ2. The experimenter sets the values of 
Δ, π(Δ), v, and α, but in order to calculate sample size, an estimate of σ2 is needed. This 
needs to be determined from a pilot experiment. However, we will see that if our estimate 
is lower than the actual variance, the power will be lower than π(Δ), so it is wise to 
estimate on the high side. On the other hand, if the estimate is too high, then the power 
will be higher than needed, and we will be rejecting Ho with high probability in cases 
where the difference is less than we really care about. The upper limit of a confidence 
interval for σ2 thus seems like a reasonable choice of estimate. So we will start by 
looking at confidence intervals for σ2. 
 
Confidence Intervals for σ2 (See Section 3.4.6) 
 
It can be shown that SSE/σ2 ~ χ2(n-v). This allows us to adapt the usual confidence 
interval procedure to obtain one for σ2: If we want, say, an upper 95% CI for σ2, then we 
find the 5th percentile c0.05 of the χ2(n-v) distribution, so that P(SSE/σ2 ≥ c0.05  ) = 0.95. 
(Draw a picture!) 
 Equivalently: P(SSE/ c0.05   ≥ σ2) = 0.95. 
Replacing SSE by ssE, we get a 95% upper confidence interval (0, ssE/ c0.05) for σ2, or a 
95% upper confidence limit ssE/ c0.05 for σ2. 
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Example: In the battery experiment, the Minitab output gave ssE = 28413. Here, n = 16 
and v = 4, so n - v = 12. Now c0.05 = 5.226 (5th percentile for χ2(12)), so the 95% upper 
confidence bound is  28413/5.226 = 5436.85. (Recall that the estimate for σ2 was msE = 
2368.) 
 
Exercise: “5436.85 is a 95% upper confidence bound for σ2 ” means: 
 
 
Calculating sample sizes for a given power 
 
We will assume we are seeking equal sample sizes for each treatment, so will let r be the 
common value of the treatment sample sizes (i.e., all ri = r). If we have specified a 
significance level α, then we will reject  

H0: τ1 =  τ2 = … = τv  
in favor of  

Ha: At least two of the τi's differ 
when  
 msT/msE > F(v-1, n-v; α). 
Thus the power of the test is 
 π(Δ) = P(MST/MSE > F(v-1, n-v; α) | at least one τi - τj ≥ Δ ) 
 
Recall that the sampling distribution of the test statistic MST/MSE is F(v-1, n-v) if H0 is 
true. If H0 is not true, then the sampling distribution of MST/MSE has what is called a 
noncentral F-distribution. (This is the distribution of the quotient of two independent 
"non-central chi-squared" random variables divided by their degrees of freedom.) This 
distribution is defined in terms of a noncentrality parameter δ2, which under our 
assumptions is given by 
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It turns out that the hardest situation to detect (therefore the "limiting case" on which the 
sample size calculations depend) is when the effects of two of the factor levels differ by Δ 
and the rest are all equal and midway between these two. 
 
Exercise: In this limiting case, the formula for δ2 reduces to 
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Power for the noncentral F distribution is given in tables as a function of φ = 
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terms of φ, 
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However, the tables need to be used iteratively, since the denominator degrees of 
freedom n - v = v(r-1) depend on r. A procedure for doing this is given on p. 52 of the 
text. 
  
  
 
 


