CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS (Section 17.3.5)

In practice, these play the role for random effects that confidence intervals for contrasts play for fixed effects.

Confidence intervals for $\boldsymbol{\sigma}^{\mathbf{2}}$: These are constructed just as for fixed effects; see Section 3.4.6 or the class notes Choosing Sample Sizes.

Confidence intervals involving $\sigma_{\mathbf{T}}{ }^{2}$: Three types of confidence intervals are of interest: for $\sigma_{T}{ }^{2}$, for $\sigma_{T}{ }^{2} / \sigma^{2}$, and for $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$. The first cannot be done exactly, so we'll take that last.

Confidence intervals for $\sigma_{T}{ }^{2} / \sigma^{2}$: We use the fact (see notes Testing for Treatment Effect as a Proportion of Error Variance) that

$$
\frac{M S T /\left(c \sigma_{T}^{2}+\sigma^{2}\right)}{M S E /\left(\sigma^{2}\right)} \sim \mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v})
$$

where c is a certain constant defined in terms of n, v, and the $\mathrm{r}_{\mathrm{i}} ; \mathrm{c}=\mathrm{r}$ if the design is balanced) (See notes Random Effects Models or Section 17.3)

If we want a (1- α) $100 \% \mathrm{CI}$ for $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \mathbf{\sigma}^{\mathbf{2}}$, take
$f_{1}=F(v-1, n-v, 1-\alpha / 2)$ (so that there is area $\alpha / 2$ to the left of f_{1} in the $\mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v})$ distribution), and
$f_{2}=F(v-1, n-v, \alpha / 2)$ (so that there is area $\alpha / 2$ to the right of f_{2} in the $\mathrm{F}(\mathrm{v}-1, \mathrm{n}-\mathrm{v})$ distribution). [Draw a picture!]
Then

$$
\operatorname{Prob}\left(\mathrm{f}_{1} \leq \frac{M S T /\left(c \sigma_{T}^{2}+\sigma^{2}\right)}{M S E /\left(\sigma^{2}\right)} \leq \mathrm{f}_{2}\right)=1-\alpha
$$

or equivalently,

$$
\operatorname{Prob}\left(\mathrm{f}_{1} \leq[\mathrm{MST} / \mathrm{MSE}]\left[\boldsymbol{\sigma}^{2} /\left(\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right)\right] \leq \mathrm{f}_{2}\right)=1-\alpha,
$$

The left inequality is equivalent to

$$
\begin{aligned}
& \left(\boldsymbol{c}_{\mathbf{T}}^{2}+\boldsymbol{\sigma}^{2}\right) / \boldsymbol{\sigma}^{2} \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right), \text { or } \\
& \mathrm{c}\left(\boldsymbol{\sigma}_{\mathbf{T}}^{2} / \boldsymbol{\sigma}^{2}\right)+1 \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right),
\end{aligned}
$$

which is equivalent to

$$
\mathrm{c}\left(\boldsymbol{\sigma}_{\mathrm{T}}^{2} / \boldsymbol{\sigma}^{2}\right) \leq(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right)-1
$$

The right inequality is equivalent to

$$
(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right) \leq\left(\mathrm{c}_{\mathbf{T}}^{2}+\boldsymbol{\sigma}^{2}\right) / \boldsymbol{\sigma}^{2}=\mathrm{c}\left(\boldsymbol{\sigma}_{\mathbf{T}}^{2} / \boldsymbol{\sigma}^{2}\right)+1,
$$

which is equivalent to

$$
(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right)-1 \leq \mathrm{c}\left(\sigma_{\mathrm{T}}{ }^{2} / \sigma^{2}\right)
$$

So
$\operatorname{Prob}\left((1 / \mathrm{c})\left[(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{2}\right)-1\right] \leq \boldsymbol{\sigma}_{\mathrm{T}}{ }^{\mathbf{2}} / \boldsymbol{\sigma}^{\mathbf{2}} \leq(1 / \mathrm{c})\left[(\mathrm{MST} / \mathrm{MSE})\left(1 / \mathrm{f}_{1}\right)-1\right]\right)=1-\alpha$.
Thus $\left((1 / \mathrm{c})\left[(\mathrm{msT} / \mathrm{msE})\left(1 / \mathrm{f}_{2}\right)-1\right],(1 / \mathrm{c})(\mathrm{msT} / \mathrm{msE})\left(1 / \mathrm{f}_{1}\right)-1\right)$ is the desired confidence interval. (This means \qquad
Note: Conceivably the left hand endpoint could be less than 0 , which is unrealistic, If it is <0, do not give in to the temptation to replace it by zero; that would give the false impression of a smaller confidence interval than warranted.

Example: Use the loom data to find a 95% confidence interval for $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} / \boldsymbol{\sigma}^{2}$.
Confidence intervals for $\sigma_{T}{ }^{2} /\left(\sigma_{T}^{2}+\sigma^{2}\right)=$ the proportion of the total variance if the response attributable to the treatment level: Such confidence intervals are readily obtained from confidence intervals for $\sigma_{T}{ }^{2} / \sigma^{2}$ as follows. Divide both numerator and denominator of $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$ by σ^{2} to obtain

$$
\left.\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2} /\left(\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right)=\frac{\sigma_{T}^{2} / \sigma^{2}}{\left(\sigma_{T}^{2} / \sigma^{2}\right)+1}=\mathrm{f}\left(\sigma_{T}^{2} / \sigma^{2}\right), \text { where } \mathrm{f}(\mathrm{x})=\mathrm{x} /(\mathrm{x}+1)\right)=\frac{1}{1+\frac{1}{x}} .
$$

From the last formula for $\mathrm{f}(\mathrm{x})$, we can see that $\mathrm{f}(\mathrm{x})$ is an increasing function of x . Thus if (a, b) is a $(1-\alpha) 100 \%$ confidence interval for $\sigma_{T}^{2} / \sigma^{2}$, then $(\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{b}))=(\mathrm{a} /(\mathrm{a}+1), \mathrm{b} /(\mathrm{b}+$ $1)$) is a $(1-\alpha) 100 \%$ confidence interval for $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2} /\left(\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}+\boldsymbol{\sigma}^{2}\right)$.

Note: $\sigma_{T}{ }^{2} /\left(\sigma_{T}{ }^{2}+\sigma^{2}\right)$ is sometimes called the "population intraclass correlation coefficient" (Caution: The phrase "intraclass correlation coefficient" is also used to refer to other things.)

Example: With the loom data, find a 95% confidence interval for $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2} /\left(\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}+\boldsymbol{\sigma}^{\mathbf{2}}\right)$.
Confidence intervals for $\boldsymbol{\sigma}_{T}{ }^{2}$: There is no exact method. There are several approximate methods. Here is one. It is useful if $\boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}$ is not too small, and is adaptable to more complicated models.

Recall that $\mathrm{U}=(1 / \mathrm{c})(\mathrm{MST}-\mathrm{MSE})$ is an unbiased estimator of $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}$. If we knew its distribution, we could use that to get confidence intervals for $\sigma_{T}{ }^{2}$ in the usual way. However, it does not have a tractable distribution. But it is true that
$\mathrm{U} / \boldsymbol{\sigma}_{\mathrm{T}}{ }^{2} \approx \chi^{2}(\mathrm{x}) / \mathrm{x}$, where

$$
\mathrm{x} \approx \frac{(m s T-m s E)^{2}}{(m s T)^{2} /(v-1)^{+}(m s E)^{2} /(n-v)}
$$

(Note: This formula is given correctly on p. 605 of the text, but incorrectly on p. 600.) x is not usually an integer, so we need to interpret degrees of freedom in the χ^{2} distribution as the parameter in a formula for the pdf. (This is analogous to the twosample, unequal variance t-test.)
Thus (Draw a picture!)

$$
\mathrm{P}\left(\chi^{2}(\mathrm{x}, 1-\alpha / 2) \leq \mathrm{xU} / \boldsymbol{\sigma}_{\mathrm{T}}^{2} \leq \chi^{2}(\mathrm{x}, \alpha / 2)\right) \approx 1-\alpha
$$

where \leq means "is less than or approximately equal to", and $\chi^{2}(x, \beta)$ is the value with proportion β of the $\chi^{2}(\mathrm{x})$ distribution to its right.

The left and right approximate inequalities are, respectively, equivalent to

$$
\sigma_{\mathrm{T}}^{2} \leq \mathrm{xU} / \chi^{2}(\mathrm{x}, 1-\alpha / 2) \quad \text { and } \quad \sigma_{\mathrm{T}}^{2} \leq \mathrm{xU} / \chi^{2}(\mathrm{x}, \alpha / 2) .
$$

Thus if

$$
\mathrm{u}=(1 / \mathrm{c})(\mathrm{msT}-\mathrm{msE})\left(\text { which is our estimate for } \boldsymbol{\sigma}_{\mathbf{T}}{ }^{2}\right) \text {, then }
$$

$\left(\mathrm{xu} / \chi^{2}(\mathrm{x}, \alpha / 2), \mathrm{xu} / \chi^{2}(\mathrm{x}, 1-\alpha / 2)\right)$ is an approximate $(1-\alpha) 100 \%$ confidence interval for $\sigma_{T}{ }^{2}$.

Example: With the loom data, find a 95% confidence interval for $\boldsymbol{\sigma}_{\mathrm{T}}{ }^{2}$.

