REGRESSION IN BIVARIATE NORMAL POPULATIONS

X, Y bivariate normal.

$$
\begin{aligned}
& \mu_{X}=\text { mean of } X, \sigma_{X}=\text { standard deviation of } X \\
& \mu_{Y}=\text { mean of } Y, \sigma_{Y}=\text { standard deviation of } Y \\
& \rho=\text { correlation coefficient }
\end{aligned}
$$

What do the conditional distributions $\mathrm{Y} \mid \mathrm{X}$ look like?

Their pdf's can be calculated from the joint density using the formula

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x})=\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\
& =\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right] \\
& \quad \div \frac{1}{\sqrt{2 \pi} \sigma_{X}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right]
\end{aligned}
$$

$=($ Details left to the interested student; completing the square should be useful.) ...

$$
=\frac{1}{\sqrt{2 \pi} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2}\left(\frac{y-\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)}{\sigma_{Y}^{2}\left(1-\rho^{2}\right)}\right)^{2}\right]
$$

Result: $\mathrm{Y} \mid \mathrm{X}$ is normal, with mean and variance:

- $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})=\mu_{\mathrm{Y}}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(\mathrm{x}-\mu_{\mathrm{X}}\right)$
- $\operatorname{Var}(\mathrm{Y} \mid \mathrm{X})=\sigma_{\mathrm{Y}}{ }^{2}\left(1-\rho^{2}\right)$

Consequences:

1. "Constant variance": $\operatorname{Var}(\mathrm{Y} \mid \mathrm{X})$ does not depend on X .
2. "Linear mean function": $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ is a linear function of X , with slope $\rho \frac{\sigma_{Y}}{\sigma_{X}}$ (Note how the slope depends on all three of the parameters $\rho, \sigma_{\mathrm{x}}$, and σ_{Y}.)

So the pipe cleaner model fits!

Alternate perspectives:

1. Rearranging the mean function,

$$
\frac{E(Y \mid X=x)-\mu_{Y}}{\sigma_{Y}}=\rho \frac{x-\mu_{X}}{\sigma_{X}}
$$

Recall: $\mathrm{E}(\mathrm{E}(\mathrm{Y} \mid \mathrm{X}))=$ \qquad .

So:
Left side: Like $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ standardized
Right side $=\mathrm{x}$ standardized.

Thus: If X and Y are bivariate normal, then for every increase of 1 in standardized x, $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ "standardized" increases ρ units. (If you've seen least squares regression, you have seen the analogue for the least squares regression line, using $\operatorname{sd}(x), \operatorname{sd}(y)$ and r.)
2. Rearranging as

$$
\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})=\mu_{\mathrm{Y}}+\rho \sigma_{\mathrm{Y}} \frac{x-\mu_{X}}{\sigma_{X}},
$$

we see: For every increase of σ_{X} in $X, E(Y \mid X)$ increases $\rho \sigma_{Y}$.

Similarly for $\mathbf{X} \mid \mathbf{Y}$:

$$
\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y})=\mu_{\mathrm{X}}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(\mathrm{y}-\mu_{\mathrm{Y}}\right) \quad \operatorname{Var}(\mathrm{X} \mid \mathrm{Y})=\sigma_{\mathrm{X}}^{2}\left(1-\rho^{2}\right)
$$

Example: If X and Y have a standard bivariate normal distribution with $\rho=0.5$, then

$$
\begin{aligned}
& E(Y \mid X=x)=\rho x=x / 2(\text { which gives graph } y=x / 2) \\
& E(X \mid Y=y)=\rho y(\text { which gives graph } x=y / 2-- \text { i.e., } y=2 x)
\end{aligned}
$$

These are different! (More on homework.)

Note: The mean lines are not the same as the axes of the ellipses forming the level curves of the bivariate normal pdf. Here is a picture of a sample of 200 from a standard bivariate normal distribution with $\rho=0.5$. Also shown in the picture are:

- Some level curves for the pdf
- The axes of the ellipse
- The line showing $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$ as a function of x .
- The line showing $E(X \mid Y=y)$ as a function of y.

Which of these four lines is which?

