Summary of Part 1: The marginal mean of a random variable Y is the weighted average of the conditional means, when conditioned on a second random variable X . This says

$$
\mathrm{E}(\mathrm{Y})=\sum_{\text {all values } x \text { of } X} \operatorname{Pr}(x) E(Y \mid X=x)(\mathrm{X} \text { discrete })
$$

or

$$
\mathrm{E}(\mathrm{Y})=\int_{-\infty}^{\infty} f_{X}(x) E(Y \mid x) d x \text { (X continuous) }
$$

where $f_{x}(x)$ is the probability density function (pdf) of X.

Note:

1. There are analogous results for conditioning on more than one variable.
2. The analogous result for sample means is

$$
\bar{y}=
$$

A second (related) relationship between marginal and conditional means for populations:

Consider $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ as a new random variable U as follows:
Randomly pick an x from the distribution of X .
The new r.v. U has value $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$.

Example: $\mathrm{Y}=$ height, $\mathrm{X}=$ sex
Randomly pick a person from the population in question.

$$
U=\left\{\begin{array}{l}
E(Y \mid X=\text { female }) \text { if the person is female } \\
E(Y \mid X=\text { male }) \text { if the person is male }
\end{array}\right.
$$

Consider the expected value of this new random variable. (e.g., the expected value of the mean height for the sex of a randomly selected person from the given population. In this case, we would expect $\mathrm{E}(\mathrm{U})$ to depend on the proportion of the population which is of each sex.)

If U is discrete, then

$$
E(U)=\sum_{\substack{\text { All possible } \\ \text { values of } U}} P(u) u
$$

Example: For $\mathrm{U}=\mathrm{E}$ (height \mid sex), the values taken on by U are
\qquad
with respective probabilities \qquad and \qquad
so $E(U)=$ \qquad
which from Part I is just \qquad .

In other words,

$$
\mathrm{E}(\mathrm{E}(\mathrm{ht} \mid \operatorname{sex})=
$$

The same reasoning works in general, showing that:

The expected value of the conditional means is the weighted average of the conditional means marginal mean, which from Part 1 is just the marginal mean i.e.,

$$
\begin{gathered}
\mathrm{E}(\mathrm{E}(\mathrm{Y} \mid \mathrm{X}))=\text { weighted average of conditional means } \\
=\mathrm{E}(\mathrm{Y})
\end{gathered}
$$

