ESTIMATING CONDITIONAL MEANS

Model Assumptions: Linear mean, constant variance, independence, and normality.

Sampling Distribution of Estimate of Conditional Mean:

- $\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$ is our estimate of E(Y|x). Note that this is a random variable (varying according to our choice of y_i 's), so has a sampling distribution.
- Since *η̂*₀ and *η̂*₁are linear combinations of the y_i's, so is Ê(Y|x). Hence Ê(Y|x) has a normal distribution. (Why doesn't this follow just from normality of *η̂*₀ and *η̂*₁?)

•
$$E(\hat{E}(Y|x)|x_1, ..., x_n) = E(\hat{\eta}_0 + \hat{\eta}_1 x|x_1, ..., x_n)$$

= $E(\hat{\eta}_0|x_1, ..., x_n) + E(\hat{\eta}_1|x_1, ..., x_n)x$
= $\eta_0 + \eta_1 x = E(Y|x)$

So E(Y|x) is an unbiased estimator of E(Y|x).

• Calculations (left to the interested reader; you need to consider covariances) will show that

$$\operatorname{Var}(\hat{\mathrm{E}}(\mathrm{Y}|\mathrm{x})|\,\mathrm{x}_{1},\,\ldots\,,\,\mathrm{x}_{n}) = \sigma^{2} \left(\frac{1}{n} + \frac{(x - \overline{x})^{2}}{SXX}\right)$$

Comments:

1. What does this say when
$$x = 0$$
?

2. The further x is from \overline{x} , the ______ the variance of the conditional mean estimate.

3. How does $Var(\hat{E}(Y|x))$ depend on n and the spread of the x_i's?

Define the standard error of $\hat{E}(Y|x)$:

s.e (
$$\hat{E}(Y|x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{SXX}}$$

As with $\hat{\eta}_0$ and $\hat{\eta}_1$, one can show that (under our model assumptions)

$$\frac{\hat{E}(Y \mid x) - E(Y \mid x)}{s.e.(\hat{E}(Y \mid x))} \sim t(n-2),$$

so we can use this as a test statistic to do inference on E(Y|x).