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INFERENCE FOR SIMPLE OLS

Model Assumptions ("The" Simple Linear Regression Model Version IV):

(We consider x1, … , xn as fixed.)
1. E(Y|x) = η0 + η1x (linear mean function)

2. Var(Y|x) = σ2 (Equivalently, Var(e|x) = σ2) (constant variance)

3. y1, … , yn are independent observations. (independence)
4. (NEW) Y|x is normal for each x (normality)

(1) + (2) + (4) can be summarized as:

Y|x ~ N(η0 + η1x, σ2)

Recall: e|x = Y|x - E(Y|x)

So: e|x ~ N(0, σ2)

i.e., all errors have the same distribution --  so we just say e instead of e|x .

Since 
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Look more at 
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η̂1: We can standardize  to get
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But we don't know σ2, so need to approximate it by 
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σ̂ 2 -- in other words approximate
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expect this to be normal, too. However,
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The numerator of the last fraction is normal (in fact, standard normal), as noted above.

Facts: (Proofs omitted)

a. (n-2)
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σ̂
σ
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 has a χ2 distribution with n-2 degrees of freedom

Notation: (n-2)
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 ~ χ2(n-2)

b. (n-2)
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 is independent of 
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η̂1- η1 (hence independent of the numerator in (*) )

Comments on distributions:

1. A χ2(k) distribution is defined as the distribution of a random variable which is a sum

of squares of k independent standard normal random variables.
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is a sum of n

squares; the fact quoted above says that it can also be expressed as a sum of n-2 squares
of independent standard normal random variables.]

2. A t-distribution with k degrees of freedom is defined as the distribution of a random

variable of the form 

€ 

Z

U
k

 where

• Z~N(0,1)
• U~ χ2(k)

• Z and U are independent.

In the fraction (*) above, take
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Thus:  
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so we can do inference on  η1, using t = 
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 as our test statistic.

Inference on η0

With the same assumptions, it can be shown in an analogous manner (details omitted)
that
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so we can use this statistic to do inference on η0.


