INFERENCE FOR SIMPLE OLS

Model Assumptions ("The" Simple Linear Regression Model Version IV): (We consider $x_1, ..., x_n$ as fixed.)

1.	$E(Y x) = \eta_0 + \eta_1 x$	(linear mean function)
	$Var(Y x) = \sigma^2$ (Equivalently, $Var(e x) = \sigma^2$)	(constant variance)
3.	y_1, \ldots, y_n are independent observations.	(independence)
4.	(NEW) Y x is normal for each x	(normality)

(1) + (2) + (4) can be summarized as:

$$Y|x \sim N(\eta_0 + \eta_1 x, \sigma^2)$$

Recall: e|x = Y|x - E(Y|x)

So: $e|x \sim N(0, \sigma^2)$

i.e., all errors have the same distribution -- so we just say e instead of e|x.

Since $\hat{\eta}_0$ and $\hat{\eta}_1$ are linear combinations of the Y|x_i's, (3) + (4) imply that $\hat{\eta}_0$ and $\hat{\eta}_1$ (that is, their sampling distributions) are normally distributed. Recalling that

$$E(\hat{\eta}_1) = \eta_1 \qquad \text{Var}((\hat{\eta}_1) = \frac{\sigma^2}{SXX} \qquad E(\hat{\eta}_0) = \eta_0 \qquad \text{Var}(\hat{\eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{SXX}\right),$$

We have

$$\hat{\eta}_{1}$$
~ $\hat{\eta}_{0}$ ~

Look more at $\hat{\eta}_1$: We can standardize to get

$$\frac{\hat{\eta}_{1} - \eta_{1}}{\sqrt{\sigma^{2}/SXX}} \sim N(0,1)$$

But we don't know σ^2 , so need to approximate it by $\hat{\sigma}^2$ -- in other words approximate $\operatorname{Var}(\hat{\eta}_1)$ by $V\hat{a}r(\hat{\eta}_1) = [\text{s.e. }(\hat{\eta}_1)]^2 = \frac{\hat{\sigma}^2}{SXX}$. Thus we want to use $\frac{\hat{\eta}_1 - \eta_1}{\sqrt{\hat{\sigma}^2/SXX}}$. But we can't

expect this to be normal, too. However,

(*)
$$\frac{\hat{\eta}_{1} - \eta_{1}}{\sqrt{\hat{\sigma}^{2}/SXX}} = \frac{\hat{\eta}_{1} - \eta_{1}}{\frac{\sqrt{\hat{\sigma}^{2}/SXX}}{\sqrt{\hat{\sigma}^{2}/\sigma^{2}}}}$$

The numerator of the last fraction *is* normal (in fact, standard normal), as noted above.

Facts: (Proofs omitted)

a. (n-2) $\frac{\hat{\sigma}^2}{\sigma^2}$ has a χ^2 distribution with n-2 degrees of freedom Notation: (n-2) $\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2$ (n-2) b. (n-2) $\frac{\hat{\sigma}^2}{\sigma^2}$ is independent of $\hat{\eta}_1$ - η_1 (hence independent of the numerator in (*))

Comments on distributions:

1. A $\chi^2(k)$ distribution is defined as the distribution of a random variable which is a sum of squares of k independent standard normal random variables.

[Comment: Recall that $\hat{\sigma}^2 = \frac{1}{n-2}RSS$, so $(n-2)\frac{\hat{\sigma}^2}{\sigma^2} = \frac{RSS}{\sigma^2} = \sum \left(\frac{\hat{e}_i}{\sigma}\right)^2 is$ a sum of n

squares; the fact quoted above says that it can also be expressed as a sum of n-2 squares of *independent standard normal* random variables.]

2. A t-distribution with k degrees of freedom is defined as the distribution of a random variable of the form $\frac{Z}{\sqrt{U/k}}$ where

- $Z \sim N(0,1)$
- $U \sim \chi^2(k)$
- Z and U are independent.

In the fraction (*) above, take

U = (n-2)
$$\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2$$
(n-2)
Z = $\frac{\hat{\eta}_1 - \eta_1}{\sqrt{\sigma^2/SXX}} \sim N(0,1)$

$$\frac{\hat{\eta}_{\rm l}-\eta_{\rm l}}{\sqrt{\hat{\sigma}^2/SXX}} \sim t({\rm n-2}),$$

so we can do inference on η_1 , using $t = \frac{\hat{\eta}_1 - \eta_1}{\sqrt{\hat{\sigma}^2/SXX}}$ as our test statistic.

Inference on η_0

With the same assumptions, it can be shown in an analogous manner (details omitted) that

$$\frac{\hat{\eta}_0 - \eta_0}{s.e.(\hat{\eta}_0)} \sim t(n-2),$$

so we can use this statistic to do inference on η_0 .