INFERENCE FOR SIMPLE OLS

Model Assumptions ("The" Simple Linear Regression Model Version IV):
(We consider $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ as fixed.)

1. $E(Y \mid x)=\eta_{0}+\eta_{1} x$
(linear mean function)
2. $\operatorname{Var}(\mathrm{Y} \mid \mathrm{x})=\sigma^{2}$ (Equivalently, $\left.\operatorname{Var}(\mathrm{e} \mid \mathrm{x})=\sigma^{2}\right)$ (constant variance)
3. $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$ are independent observations.
(independence)
4. $(N E W) \mathrm{Y} \mid \mathrm{x}$ is normal for each x
(normality)
$(1)+(2)+(4)$ can be summarized as:

$$
\mathrm{Y} \mid \mathrm{x} \sim \mathrm{~N}\left(\eta_{0}+\eta_{1} \mathrm{x}, \sigma^{2}\right)
$$

Recall: $\quad \mathrm{e}|\mathrm{x}=\mathrm{Y}| \mathrm{x}-\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$
So: \quad e|x $\sim N\left(0, \sigma^{2}\right)$
i.e., all errors have the same distribution -- so we just say e instead of e|x .

Since $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ are linear combinations of the $\mathrm{Y} \mid \mathrm{x}_{\mathrm{i}}$'s, (3) + (4) imply that $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ (that is, their sampling distributions) are normally distributed. Recalling that

$$
\mathrm{E}\left(\hat{\eta}_{1}\right)=\eta_{1} \quad \operatorname{Var}\left(\left(\hat{\eta}_{1}\right)=\frac{\sigma^{2}}{S X X} \quad \mathrm{E}\left(\hat{\eta}_{0}\right)=\eta_{0} \quad \operatorname{Var}\left(\hat{\eta}_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}\right)\right.
$$

We have

$$
\hat{\eta}_{1} \sim \quad \hat{\eta}_{0} \sim
$$

Look more at $\hat{\eta}_{1}$: We can standardize to get

$$
\frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\sigma^{2} / S X X}} \sim \mathrm{~N}(0,1)
$$

But we don't know σ^{2}, so need to approximate it by $\hat{\sigma}^{2}-$ in other words approximate $\operatorname{Var}\left(\hat{\eta}_{1}\right)$ by $\operatorname{Var}\left(\hat{\eta}_{1}\right)=\left[\text { s.e. }\left(\hat{\eta}_{1}\right)\right]^{2}=\frac{\hat{\sigma}^{2}}{S X X}$. Thus we want to use $\frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\hat{\sigma}^{2} / S X X}}$. But we can't expect this to be normal, too. However,

$$
\begin{align*}
& \frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\hat{\sigma}^{2} / S X X}}= \\
& \frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\sigma^{2} / S X X}} \tag{*}\\
& \sqrt{\hat{\sigma}^{2} / \sigma^{2}}
\end{align*}
$$

The numerator of the last fraction is normal (in fact, standard normal), as noted above.

Facts: (Proofs omitted)
a. (n-2) $\frac{\hat{\sigma}^{2}}{\sigma^{2}}$ has a χ^{2} distribution with n-2 degrees of freedom

$$
\text { Notation: } \quad(\mathrm{n}-2) \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}(\mathrm{n}-2)
$$

b. $(\mathrm{n}-2) \frac{\hat{\sigma}^{2}}{\sigma^{2}}$ is independent of $\hat{\eta}_{1}-\eta_{1}$ (hence independent of the numerator in $\left(^{*}\right)$)

Comments on distributions:

1. A $\chi^{2}(\mathrm{k})$ distribution is defined as the distribution of a random variable which is a sum of squares of k independent standard normal random variables.
[Comment: Recall that $\hat{\sigma}^{2}=\frac{1}{n-2} R S S$, so (n-2) $\frac{\hat{\sigma}^{2}}{\sigma^{2}}=\frac{R S S}{\sigma^{2}}=\sum\left(\frac{\hat{e}_{i}}{\sigma}\right)^{2} i s$ a sum of n squares; the fact quoted above says that it can also be expressed as a sum of $\mathrm{n}-2$ squares of independent standard normal random variables.]
2. A t-distribution with k degrees of freedom is defined as the distribution of a random variable of the form $\frac{Z}{\sqrt{U / k}}$ where

- $\mathrm{Z} \sim \mathrm{N}(0,1)$
- $\mathrm{U} \sim \chi^{2}(\mathrm{k})$
- Z and U are independent.

In the fraction $\left(^{*}\right)$ above, take

$$
\begin{aligned}
& \mathrm{U}=(\mathrm{n}-2) \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}(\mathrm{n}-2) \\
& \mathrm{Z}=\frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\sigma^{2} / S X X}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

Thus:

$$
\frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\hat{\sigma}^{2} / S X X}} \sim \mathrm{t}(\mathrm{n}-2),
$$

so we can do inference on η_{1}, using $\mathrm{t}=\frac{\hat{\eta}_{1}-\eta_{1}}{\sqrt{\hat{\sigma}^{2} / S X X}}$ as our test statistic.

Inference on η_{0}

With the same assumptions, it can be shown in an analogous manner (details omitted) that

$$
\frac{\hat{\eta}_{0}-\eta_{0}}{\text { s.e. }\left(\hat{\eta}_{0}\right)} \sim \mathrm{t}(\mathrm{n}-2),
$$

so we can use this statistic to do inference on η_{0}.

