JOINT, MARGINAL AND CONDITIONAL DISTRIBUTIONS

Joint and Marginal Distributions: Suppose the random variables X and Y have joint probability density function (pdf) $f_{X, Y}(x, y)$. The value of the cumulative distribution function $F_{Y}(y)$ of Y at c is then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Y}}(\mathrm{c})= \mathrm{P}(\mathrm{Y} \leq \mathrm{c}) \\
&=\mathrm{P}(-\infty<\mathrm{X}<\infty, \mathrm{Y} \leq \mathrm{c}) \\
&=\text { the volume under the graph of } \mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y}) \text { above the region ("half plane") } \\
& \mathrm{R}:\left\{\begin{aligned}
-\infty & <x<\infty \quad \text { (Sketch the region and volume yourself!) } \\
y & \leq c \quad
\end{aligned}\right.
\end{aligned}
$$

Setting up the integral to give this area, we get

$$
\begin{aligned}
\mathrm{F}_{\mathrm{Y}}(\mathrm{c}) & =\iint_{R} f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{c}\left(\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x\right) d y \\
& =\int_{-\infty}^{c} g(y) d y,
\end{aligned}
$$

where $\mathrm{g}(\mathrm{y})=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x$.

Thus the pdf of Y is $f_{Y}(y)=F_{Y}{ }^{\prime}(y)=g(y)$

In other words, the marginal pdf of Y is

$$
\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

Similarly, the marginal pdf of X is

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\int_{-\infty}^{\infty} g_{X, Y}(x, y) d y
$$

Note: When X or Y is discrete, the corresponding integral becomes a sum.

Joint and Conditional Distributions:

First consider the case when X and Y are both discrete. Then the marginal pdf's (or pmf's $=$ probability mass functions, if you prefer this terminology for discrete random variables) are defined by

$$
\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}(\mathrm{Y}=\mathrm{y}) \quad \text { and } \mathrm{f}_{\mathrm{X}}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})
$$

The joint pdf is, similarly,

$$
\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})=\mathrm{P}(\mathrm{X}=\mathrm{x} \text { and } \mathrm{Y}=\mathrm{y})
$$

The conditional pdf of the conditional distribution $\mathrm{Y} \mid \mathrm{X}$ is

$$
\begin{aligned}
\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x}) & =\mathrm{P}(\mathrm{Y}=\mathrm{y} \mid \mathrm{X}=\mathrm{x}) \\
& =\frac{P(X=x \text { and } Y=y)}{P(X=x)} \\
& =\frac{f_{X, Y}(x, y)}{f_{X}(x)} .
\end{aligned}
$$

Is this also true for continuous X and Y ? In other words:

$$
\text { Is } \int_{c}^{d} \frac{f_{X, Y}(a, y)}{f_{X}(a)}=\mathrm{P}(\mathrm{c} \leq \mathrm{Y} \leq \mathrm{d} \mid \mathrm{X}=\mathrm{a}) \text { for every } \mathrm{a} \text { ? }
$$

It is enough to show that $\int_{-\infty}^{d} \frac{f_{X, Y}(a, y)}{f_{X}(a)}=\mathrm{P}(\mathrm{Y} \leq \mathrm{d} \mid \mathrm{X}=\mathrm{a})$ for every a. (Draw a picture to help see why!).

Starting with the right side, we can reason as follows:
(Draw pictures to help see the steps!)

$$
\begin{aligned}
\mathrm{P}(\mathrm{Y} \leq \mathrm{d} \mid \mathrm{X}=\mathrm{a}) & \approx \mathrm{P}(\mathrm{Y} \leq \mathrm{d} \mid \mathrm{a} \leq \mathrm{X} \leq \mathrm{a}+\Delta \mathrm{x})(\text { for small } \Delta \mathrm{x}) \\
& =\frac{P(Y \leq d \text { and } a \leq X \leq a+\Delta x)}{P(a \leq X \leq a+\Delta x)} \\
& \approx \frac{P(Y \leq d \text { and } a \leq X \leq a+\Delta x)}{f_{X}(a) \Delta x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\int_{-\infty}^{d}\left(\int_{a}^{a+\Delta x} f_{X, Y}(x, y) d x\right) d y}{f_{X}(a) \Delta x} \\
& \approx \frac{\int_{-\infty}^{d} f_{X, Y}(a, y) \Delta x d y}{f_{X}(a) \Delta x} \\
& =\frac{\int_{-\infty}^{d} f_{X, Y}(a, y) d y}{f_{X}(a)} \\
& =\int_{-\infty}^{d} \frac{f_{X, Y}(a, y)}{f_{X}(a)} d y, \text { as desired. }
\end{aligned}
$$

Summarizing: The conditional distribution $\mathrm{Y} \mid \mathrm{X}$ has pdf

$$
\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x})=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

In word equations:

$$
\text { Conditional density of } Y \text { given } X=\frac{\text { joint density of } X \text { and } Y}{\text { marginal density of } X}
$$

(and, of course, the symmetric equation holds for the conditional distribution of X given $\mathrm{Y})$.

