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M 384G/374G

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTIONS

Joint and Marginal Distributions: Suppose the random variables X and Y have joint

probability density function (pdf) fX,Y(x,y). The value of the cumulative distribution
function FY(y) of Y at c is then

FY(c) = P( Y ≤ c)
= P(-∞ < X < ∞, Y ≤ c)

= the volume under the graph of fX,Y(x,y) above the region ("half plane")
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(Sketch the region and volume yourself!)

Setting up the integral to give this area, we get

FY(c) = 
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where g(y) = 
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f x y dxX Y, ( , )
−∞

∞∫ .

Thus the pdf of Y is fY(y) = FY'(y) = g(y)

In other words, the marginal pdf of Y is

fY(y) = 
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Similarly, the marginal pdf of X is

fX(x) = 
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g x y dyX Y, ( , )
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Note: When X or Y is discrete, the corresponding integral becomes a sum.
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Joint and Conditional Distributions:

First consider the case when X and Y are both discrete. Then the marginal pdf's (or pmf's
= probability mass functions, if you prefer this terminology for discrete random
variables) are defined by

fY(y) = P(Y = y) and  fX(x) = P(X = x).

The joint pdf is, similarly,
fX,Y(x,y) = P(X = x and Y = y).

The conditional pdf of the conditional distribution Y|X is

fY|X(y|x) = P(Y = y|X = x)
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Is this also true for continuous X and Y? In other words:

Is  
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X Y
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c
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∫  = P(c ≤ Y ≤ d | X = a) for every a?

It is enough to show that 
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( )−∞∫  = P(Y ≤ d | X = a) for every a. (Draw a picture to

help see why!).

Starting with the right side, we can reason as follows:

(Draw pictures to help see the steps!)

P(Y ≤ d | X = a) ≈ P(Y ≤ d | a ≤ X ≤ a + ∆x) (for small ∆x)
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Summarizing: The conditional distribution Y|X has pdf

fY|X(y|x) = 
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f x y

f x
X Y

X

, ( , )

( )

In word equations:

Conditional density of Y given X = 

€ 

joint density of X and Y

marginal density of X

(and, of course, the symmetric equation holds for the conditional distribution of X given
Y).


