MORE ON LEVERAGE AND VARIANCES OF RESIDUALS

(Reference: Section 7.6.3)

Recall: To establish that $Var(y - \hat{y}|x) = \sigma^2(1 + leverage)$ in simple linear regression, we reasoned that since y and \hat{y} are independent,

$$Var(y - \hat{y}|x) = \sigma^2 + Var(\hat{y}|x) = \sigma^2 + Var(\hat{E}(Y|x))$$

We *cannot* apply this to find $Var(y_i - \hat{y}_i|x)$. Why not?

Instead, we need to go through a procedure much like that in finding $Var(\hat{E}(Y|x))$, taking covariances into account. The result, generalized to multiple regression:

$$\operatorname{Var}(\hat{e}_i|\underline{\mathbf{x}}) = \sigma^2(1 - h(\underline{\mathbf{u}}_i))$$

Notation: $h_i = h_{ii} = h(\underline{u}_i)$ (= $h(\underline{x}_i)$ by abuse of notation) is called the i^{th} leverage.

So:
$$Var(\hat{e}_i) = \sigma^2(1 - h_i)$$

Consequence: Since $Var(\hat{e}_i) \ge 0$,

$$h_i \leq 1$$
.

Note:

- i) h could be > 1 for other values of x.
- ii) $h \ge 0$ since $Var(\hat{E}(Y|\underline{x})) = h\sigma^2$

Practical consequence: If h_i is close to 1, then $Var(\hat{e}_i)$ is small. Recalling that $E(\hat{e}_i) = 0$, this implies that \hat{e}_i is small -- so the least squares fit is close to (\underline{u}_i, y_i) . In other words:

If h_i is close to 1, then \underline{x}_i is influential.

Thus it is advisable to check leverages to identify possible influential observations.