THE MULTIPLE LINEAR REGRESSION MODEL

Notation:

p predictors $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$
$\mathrm{k}-1$ non-constant terms $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}-1}$
Each u_{j} is a function of $x_{1}, x_{2}, \ldots, x_{p}: u_{j=} u_{j}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$
For convenience, we often set $u_{0}=1$ (constant function)

The Basic Multiple Linear Regression Model: Two assumptions:

1. $\mathrm{E}(\mathrm{Y} \mid \underline{\mathrm{x}})=\eta_{0}+\eta_{1} \mathrm{u}_{1}+\ldots+\eta_{\mathrm{k}-1} \mathrm{u}_{\mathrm{k}-1} \quad$ (Linear Mean Function)
2. $\operatorname{Var}(\mathrm{Y} \mid \underline{\mathrm{x}})=\sigma^{2} \quad$ (Constant Variance)

Assumption (1) in vector notation:

$$
\underline{\mathrm{u}}=\left\lfloor\begin{array}{c}
u_{0} \\
u_{1} \\
\mathrm{M} \\
u_{k-1}
\end{array} ~=\left\lfloor\begin{array}{c}
1 \\
u_{1} \\
\mathrm{M} \\
u_{k-1}
\end{array}\right\rfloor, \quad \underline{\eta}=\left\lfloor\begin{array}{c}
\eta_{0} \\
\eta_{1} \\
\mathrm{M} \\
\eta_{k-1}
\end{array}\right\rfloor\right.
$$

Then $\underline{\eta}^{T}=\left[\begin{array}{llll}\eta_{0} & \eta_{1} & \ldots & \eta_{k-1}\end{array}\right]$ and

$$
\underline{\eta}^{\mathrm{T}} \underline{u}=\eta_{0}+\eta_{1} \mathbf{u}_{1}+\ldots+\eta_{\mathrm{k}-1} \mathbf{u}_{\mathrm{k}-1},
$$

so (1) becomes:

$$
\text { (1') } \mathrm{E}(\mathrm{Y} \mid \underline{\mathrm{x}})=\underline{\eta}^{\mathrm{T}} \underline{\mathbf{u}}
$$

If we have data with $\mathrm{i}^{\text {th }}$ observation $\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{ip}}, \mathrm{y}_{\mathrm{i}}$, recall

$$
\underline{\mathrm{x}}_{\mathrm{i}}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\mathrm{M} \\
x_{i p}
\end{array}\right\rfloor=\left[\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{ip}}\right]^{\mathrm{T}}
$$

Define similarly

$$
\mathrm{u}_{\mathrm{ij}}=\mathrm{u}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}\right)=\text { the value of the } \mathrm{j}^{\text {th }} \text { term for the } \mathrm{i}^{\text {th }} \text { observation, and }
$$

$$
\underline{\mathrm{u}}_{\mathrm{j}}=\left\lfloor\begin{array}{c}
u_{i 0} \\
u_{i 1} \\
\mathrm{M} \\
u_{i, k-1}
\end{array}\right\rfloor
$$

So in particular, the model says

$$
\mathrm{E}\left(\mathrm{Y} \mid \underline{\underline{x}}_{\mathrm{i}}\right)=\underline{\eta}^{\mathrm{T}} \underline{u}_{i}
$$

Estimation of Parameters: Analogously to the case of simple linear regression, consider functions ("hyperplanes") of the form

$$
\mathrm{y}=\mathrm{h}_{0}+\mathrm{h}_{1} \mathrm{u}_{1}+\ldots+\mathrm{h}_{\mathrm{k}-1} \mathrm{u}_{\mathrm{k}-1}=\underline{\mathrm{h}}^{\mathrm{T}} \underline{\underline{u}} .
$$

The least squares estimate of $\underline{\eta}$ is the vector

$$
\left.\underline{\hat{\eta}}=\left\lvert\, \begin{array}{c}
\hat{\eta}_{0} \\
\hat{\eta}_{1} \\
\mathrm{M} \\
\hat{\eta}_{k-1}
\end{array}\right.\right\rfloor
$$

that minimizes the "objective function"

$$
\operatorname{RSS}(\underline{\mathrm{h}})=\sum_{i=1}^{n}\left(y_{i}-\underline{h}^{T} \underline{u}_{i}\right)^{2}
$$

Recall: In simple linear regression, the solution had $\operatorname{SXX}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ in the denominator. So the formula won't work if all x_{i} ' $\mathrm{s}=\bar{x}$. In this case, there is not a unique solution to the least squares problem. (Draw a picture in the case $n=2$!)

In multiple regression: There is a unique solution $\hat{\underline{\eta}}$ provided:
i) $\mathrm{k}<\mathrm{n} \quad$ (the number of terms is less than the number of observations)
ii) no u_{j} is (as a function) a linear combination of the other u_{i} 's

When (ii) is violated, we say there is (strict) multicollinearity.

If there is a unique solution, it is called the ordinary least squares (OLS) estimate of the (vector of) coefficients.

