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REGRESSION MODELS

One approach: Use theoretical considerations to develop a model for the mean function
or other aspects of the conditional distribution.

The next two approaches require some terminology:

Error: e|x = Y|(X = x) - E(Y|X = x)
= Y|x - E(Y|x) for short

• So Y|x = E(Y|x) + e|x (Picture this …)

• E|x is a random variable

• E(e|x) = E(Y|x) - E(Y|x)) = E(Y|x) - E(Y|x) = 0

• Var(e|x) =

• The distribution of e|x is

Second approach:

Bivariate Normal Model: Suppose X and Y have a bivariate normal distribution.

Recall:
• Y|x is normal

• E(Y| x) = µY  + ρ
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(x - µX ) (linear mean function)

• Var(Y|x) = σY
2(1- ρ2) (constant variance)

Thus:

• E(Y|x) = a + bx
• Var(Y|x) = σ2

where
b =

a =

σ2 =
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Implications for e|x:

• e|x ~

Third approach: Model the conditional distributions

"The" Simple Linear Regression Model

Version I:
Only one assumption: E(Y|x) is a linear function of x.

Typical notation: E(Y|x) = η0 + η1x (or E(Y|x) = β0 + β1x)

Equivalent formulation: Y|x = η0 + η1x + e|x

Interpretations of parameters: (Picture!)
η1:

η0 : (if …)

When model fits:
• X, Y bivariate normal
• Other situations

Example: Blood lactic acid
Why is this not bivariate normal?

• Model might also be used when mean function is not linear, but linear
approximation is reasonable.

Version II: Two assumptions:

1. E(Y|x) = η0 + η1x (linear mean function)

2. Var(Y|x) = σ2 (constant variance)

Equivalent formulation:
1'. E(Y|x) = η0 + η1x (linear mean function)

2': Var(e|x) = σ2 (constant error variance)

[Draw a picture!]
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When model fits:

• If X and Y have a bivariate normal distribution.

• Credible (at least approximately) in many other situations as well, for transformed
variables if not for the original predictor. (i.e., it's often useful)

Until/unless otherwise stated, we will henceforth assume the Version II model -- i.e., we

all assume conditions (1) and (2) (equivalently, (1') and (2').)

Thus we have three parameters:
ηηηη0, ηηηη1 (which determine E(Y|x) and σσσσ2 (which determines Var(Y|x)

The goal: To estimate η0 and η1 (and later σ2) from data.

Notation: The estimates of η0 and η1 will be called 

€ 

η̂0 and 

€ 

η̂1, respectively. From 

€ 

η̂0 and

€ 

η̂1, we obtain an estimate

      

€ 

Ê(Y|x) = 

€ 

η̂0 +

€ 

η̂1x

of E(Y|x).

Note: 

€ 

Ê(Y|x)  is the same notation we used earlier for the lowess estimate of E(Y|x). Be
sure to keep the two estimates straight.

 More terminology:
• We label our data (x1, y1), (x2, y2), … , (xn, yn).
• 

€ 

ŷi = 

€ 

η̂0 +

€ 

η̂1xi is our resulting estimate 

€ 

Ê(Y|xi) of E(Y|xi). It is called the i th

fitted value or i th fit.
• 

€ 

êi=  yi - 

€ 

ŷi is called the i th residual.

Note: 

€ 

êi  (the residual) is analogous to but not the same as e|xi (the error). Indeed, 

€ 

êi  can

be considered an estimate of the error ei  = yi - E(Y|xi).
Picture:
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Least Squares Regression
•  Method of obtaining estimates 

€ 

η̂0 and 

€ 

η̂1 for η0   and η1

Consider lines y = h0 + h1x. We want the one that is "closest" to the data points (x1, y1),
(x2, y2), … , (xn, yn) collectively.

What does "closest" mean? Various possibilities:

1. The usual math meaning: shortest perpendicular distance to point.
Problems:

• Gets unwieldy quickly.
• We're really interested in getting close to y for a given x -- which suggests:

2. Minimize ∑ di, where di = yi - (h0 + h1xi) = vertical distance from point to candidate

line. (Note: If the candidate line is the desired best fit then di =           .)
Problem: Some di's will be positive, some negative, so will cancel out in the sum.
This suggests:

3. Minimize ∑ |di|. This is feasible with modern computers, and is sometimes done.

Problems:
• This can be computationally difficult and lengthy.
• The solution might not be unique.

Example:
• The method does not lend itself to inference about the fit.

4. Minimize ∑ di
2

This works!
See demo.

Terminology:
• ∑ di

2 is called the residual sum of squares (denoted RSS(h0, h1)) or the

objective function.
• The values of h0 and h1 that minimize RSS(h0, h1) are denoted 

€ 

η̂0 and 

€ 

η̂1,

respectively, and called the ordinary least squares (or OLS) estimates of η0

and η1


