STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

Situation:
Assumption: E(Y|X) =n, + X (linear mean function)

Data: (%, Y1), (% Y2), -+ (X Vo)
Least squares estimatd%(Y|x) = n, +NX, where
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osxx

SXX'=3 (% -X)* =3 X( % -X)

SXY =3 (X -X) (Yi- ¥) =2 (X -X) Y,
Comment: If we also assume|x (equivalently, Y|x) is normal with constant variance,
then the least squares estimates are the same as the maximum likelihood estiates of

and n,.

Propertiesof 1, and ;:
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Thus: If thex/'s are fixed (as in the blood lactic acid examplen 7, is a linear
combination of thes.

Note: Here we want to think of eaglas a random variable with distribution Y[khus,
if each Y|xis normal, them), is also normal. If the Y} are not normal but n is large,

then i), is approximately normal. This will allow us to do inferencefpn(Details later.)
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expression for SXX)

Z(xi —X) = 0 (as seen in establishing the alternate



(X —X) 1

IXC=3X
Remark Recall the analogous properties for the residgals

4) f,=y -A, X = %Zyi - Y CyX= Z(%—cp‘()yi, also a linear combination of thgsy
i=1 i=1 i=1
hence ...

C 1
5) The sum of the coefficients in (4) (——c X)=>»(=)-X)c =n(
By =2
Sampling distributions of 7, and 7,:

Consider x, ... , X, as fixed (i.e., condition on X... , X,).

Model Assumptions ("The" Simple Linear Regression Model Version Ill):

o E(Y[X) =no+nx (linear mean function)
« Var(Y|x) = o® (Equivalently Var(e|x) =0?) (constant variance)
* (NEW) vy, ...y, are independent observations. (independence)

The new assumption means we can consigetr.y,y, as coming from n independent
random variables y ... ,Y,, whereY, has the distribution of Y|x

CommentWe donotassume that the's are distinct. If, for example, x x,, then we
are assuming that yand y are independent observations from the same conditional
distribution Y|x.

Since y, ... ,Y, are random variables, sofs-- but it depends on the choice 6f x. ,
X, SO we can talk about the conditional distributipfx,, ... , X,.

Expected value af, (as they's vary):

E(ﬁllxl’ !Xn) = E(Zc,y, |Xl! ,Xn)
i=1

=26 E(ilx, - %)
=>¢ E(yi[x) (sincey, depends only oRr)



=3¢ (No + NX) (model assumption)
=No2C + N2 G X;
=N0+nl=n,

Thus: /), is an unbiased estimator gf.

Variance off), (as they's vary):

var(f,[x, ... , %) =Var() ¢ [X, ... ,X,)

i=1

=S¢’ Var(ylx, ... ,X,)
=S¢’ Var(y|x) (sincey, depends only oRr)
=y c’o?
=0%yc?
x—mﬁ
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(definition ofc)
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For short: Varf),) =

o
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0 s.d.(A) =

Comments This is vaguely analogous to the sampling standard deviation for aynean
s.d. (estimator) _population standard deviation

 something

However, here the "something," namely SXX, is more complicated. However, we can
still analyze this formula to see how the standard deviation varies with the conditions of
sampling. Fory, the denominator is the square root of n, so we see that as n becomes
larger, the sampling standard deviationyogets smaller. Here, recalling that

SXX =5 (x -X)% we reason that:

o Ifthe x's are far fromx, SXX is , SO s(dn,) is

» Ifthe x's are close tx, SXX is , SO s(dn,) is



Thus if you are designing an experiment, choosingth¢o be from their
mean will result in a more precise estimate)pf(Assuming the linear model fits!)

Expected value and variance if:

n
. " 1 : : -
Using the formulag,= Z(——cp‘()yi, calculations (left to the interested student) similar
i=1 n
to those forn, will show:

« E(7,) =N, (So 1, is an unbiased estimator i.)
. x? L
e Var(n,) = 02%+ [, so
° M C
. 1. X
s.d =0,—+
) \n  SXX
Analyzing the variance formula:
« The variance of), is than the variance)of
- Does this agree with intuition?
» Alarger sample size tends to give a variance fa,.
 Alarger X gives a variance fr

- Does this agree with intuition?
« The spread of the's affects the variance @f, in the same way it affects the variance
of n,.

Covariance off), andq,: Similar calculations (left to the interested student) will show

. X
Cov(A,,n,) = —0°——
(Ng>11) K

Thus:
s 1N, andj, are not independent
- Does this agree with intuition?
« The sign of Covf),,1,) is opposite that ok.
- Does this agree with intuition?

Estimatingo® To use the variance formulas above for inference, we need to esiimate
(= Van(Y|x;), the same for al).



First, some plausible reasonirijwe had lots of observations,y; ,....y, from

Y|x;, then we could use thaivariate standard deviation
1 2
m_ljzzl(yi,. y)
of these m observations to estimate(Herey, is the mean o/, .-, » which would

be our best estimate of E(X) just usingy, .y, ,.-..Y; )

A We don't typically have lots ¢fs from one x so we might try (reasoning that
E(Y | x)) is our best estimate of ¥lx;))

1 ¢ ~ 2
m;[yi - E(Y |Xi)]

However (just as in the univariate case, we need a denominator n-1 to get an unbiased
estimator), a lengthy calculation (omitted) will show that

E(RSS| X, ... ,X,) =(n-2)c®
(where the expected value is over all samples of theavith thex;'s fixed)

Thus we use the estimate

&2:LRSS
n-2

to get an unbiased estimator ot
E(6%|Xy, ... ,X,) = 0%

[If you like to think heuristically in terms of losing one degree of freedom for each
calculation from data involved in the estimator, this makes senserBathd}, need to

be calculated from the data to get RSS.]

Standard Errors fom, andq,: Using

R

5. |RSS
\n-2



as an estimate @f in the formulas fos.d (7,) ands.d(f,), we obtain thestandard errors

. G
S.e. = —
0= e
and
A1 X
Se'(n")_a\ﬁJrsc:

as estimates af.d (7,) ands.d (7,), respectively.



