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INDEPENDENCE, COVARIANCE AND CORRELATION  M384G/374G 
 
Independence: For random variables X and Y, the intuitive idea behind "Y is 
independent of X" is that the distribution of Y shouldn't depend on what X is. This can be 
expressed in terms of the conditional pdf's to say "f(y|x) doesn't depend on x." 
 
Caution: "Y is not independent of X" means simply that the distribution of X may vary as 
Y varies. It doesn't mean that X is a function of Y. 
 
If Y is independent of X, then: 
 
1. µx = E(Y|X = x) does not depend on x. 
 
(Question: Is the converse true? That is, if E(Y|X = x) does not depend on x, can we 
conclude that Y is independent of X?) 
 
2. (Still assuming Y is independent of X) Let h(y) be the common pdf of the conditional 

distributions Y|X. Then for every x,   h(y) = f(y|x) = 

! 

f (x, y)

fX (x)
, where f(x,y) is the joint 

pdf of X and Y. Therefore 
 
 f(x,y) = h(y) fX(x) 
 
 fY(y) = 

! 

fX,Y (x, y)dx"#

#

$  

  = 

! 

h(y) fX (x) dx"#

#

$  

  = h(y)

! 

fX (x) dx"#

#

$  = h(y) = f(y|x) 
In other words: If Y is independent of X, then the conditional distributions of Y given X 
are the same as the marginal distribution of Y. 
 
3. Now (still assuming Y is independent of X) we have 

 fY(y) = f(y|x) = 

! 

f (x, y)

fX (x)
, 

so 
  fY(y)fX(x) = f(x,y). 
 
In other words: If Y is independent of X, then the joint distribution of X and Y is the 
product of the marginal distributions of X and Y.  
 
Exercise: The converse of this last statement is true. That is: If the joint distribution of X 
and Y is the product of the marginal distributions of X and Y, then Y is independent of X.  
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Note that the condition fY(y)fX(x) = f(x,y) is symmetric in X and Y. Thus (3) and its 
converse imply that : Y is independent of X if and only if X is independent of Y. So it 
makes sense to say "X and Y are independent." 
 
Putting this all together, have: The following conditions are all equivalent: 

i. X and Y are independent. 
ii. fX,Y(x,y) = fY(y)fX(x)  

iii. The conditional distribution of Y|X = x is independent of x 
iv. The conditional distribution of X|Y = y is independent of y. 
v. f(y|x) = fY(y) for all y. 

vi. f(x|y) = fX(x) for all x. 
 
Additional property of independent random variables: If X and Y are independent, then 
E(XY) = E(X)E(Y). (The proof of this fact will be assigned as homework for October 
14.) 
 
  
Covariance: The covariance of two random variables X and Y is defined as  
 
 Cov(X,Y) = E([X - E(X)][Y - E(Y)]) 
 
Comments: 
• The capital C in Cov is consistent with the notation used in this class of capitalizing 

items that relate to the population, and using lower case (or a "hat") for items 
referring to a sample. There is a related notion of covariance for a sample, discussed 
briefly later. Consistent with general terminology, Cov is a parameter since it refers 
to the population, and the sample covariance (cov or Cov-hat) is a statistic since it is 
calculated from the sample. 

• Compare and contrast with the definition of Var(X). 
• If X and Y both tend to be on the same side of their respective means (i.e., both 

greater than or both less than their means), then [X - E(X)][Y - E(Y)] tends to be 
positive, so Cov(X,Y) is positive. Similarly, if X and Y tend to be on opposite sides 
of their respective means, then Cov(X,Y) is negative. If there is no trend of either 
sort, then Cov(X,Y) should be zero. Thus covariance roughly measures the extent of a 
"positive" or "negative" trend in the joint distribution  of X and Y. 

• What are the units of Cov(X,Y)? 
 
Properties: 
 
1. Cov(X, X) =  
 
2. Cov(Y, X) =  
 
3. Cov (X, Y) = E(XY) - E(X)E(Y). 

• Why? 
• In words … 



 3 

• Compare with the alternate formula for Var(X). 
 
4. Consequence: If X and Y are independent, then:  
 

Note: The converse of this statement is false. This will be a problem on a future 
homework set. 

 
5. Cov(cX, Y) =     and  Cov(X, cY) =  
 

6. Cov(a + X,Y) =     and  Cov(X, a +Y) =  
 
7. Cov(X + Y, Z)) =     and Cov(X, Y + Z) =  
 
8. Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y) 

• Why? 
• Consequence: If X and Y are independent, then 

___________________________  
• Note: The converse of this last statement is false.  

 
 Bounds on Covariance 
 
Let σX denote the population standard deviation 

! 

Var(X)  of X. (Do not confuse with 
the sample standard deviation =  s or s.d. or 

! 

ˆ " ). Define the population standard deviation 
σY of Y similarly. 

Consider the new random variable 

! 

X

"
X

+
Y

"
Y

. Since Variance is always ≥ 0, 

 

(*) 0 ≤ Var(

! 

X

"
X

+
Y

"
Y

) 

  = Var(

! 

X

"
X

) + Var(

! 

Y

"
Y

) + 2Cov(

! 

X

"
X

,
Y

"
Y

) 

  = 

! 

1

"
x

2
 Var(X) + 

! 

1

"
Y

2
Var(Y) + 

! 

2

"
X
"
Y

Cov(X,Y) 

 

  = 2[1 + 

! 

Cov(X,Y )

"
X
"
Y

]. 

 
Therefore 

(**)  

! 

Cov(X,Y )

"
X
"
Y

 ≥ -1   (or: Cov(X, Y) ≥ -

! 

"
X
"
Y

). 

 

Looking at Var(

! 

X

"
X

#
Y

"
Y

) similarly shows (details left to the student): 
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(***)  

! 

Cov(X,Y )

"
X
"
Y

 ≤ 1,   (or: Cov(X, Y) ≤ 

! 

"
X
"
Y

.). 

 
Combining (**) and (***) gives: 
  

  

! 

Cov(X,Y )

"
X
"
Y

 ≤ 1,   (or: |Cov(X, Y)| ≤

! 

"
X
"
Y

)  

 
Moreover, the only way we can have equality in inequality (**) is to have equality in (*) 
-- i.e, when  

  Var(

! 

X

"
X

+
Y

"
Y

) = 0 

 

This can happen if and only if the random variable

! 

X

"
X

+
Y

"
Y

 is constant -- say,  

! 

X

"
X

+
Y

"
Y

 = c. 

 

(Note that c must be the mean of 

! 

X

"
X

+
Y

"
Y

, which is 

! 

µ
X

"
X

+
µ
Y

"
Y

) 

 
This in turn is equivalent to  

  

! 

Y = "
Y
#
X

"
X

+ c
$ 

% 
& & 

' 

( 
) )   

or 

  

! 

Y = "
#
Y

#
X

X +#
Y
c , 

which says: The pairs (X,Y) lie on a line with negative slope.(The converse is also true -- 

details left to the student. Also note that the slope of the line is 

! 

"
#
Y

#
X

 and the y-intercept 

is 

! 

"
Y

"
X

µ
X

+ µ
Y
.) 

 

Similarly, 

! 

Cov(X,Y )

"
X
"
Y

 = +1 exactly when the pairs (X,Y) lie on a line with positive slope. 

 
 
Correlation: The correlation coefficient of the random variables X and Y is 
 

  

! 

"
X ,Y

=
Cov(X,Y )

#
X
#
Y

.  
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Note:  
• ρX,Y is often called ρ for short. 
• ρ is a parameter (since it refers to the population). There is also a sample correlation 

coefficient (usually called r) that is a statistic (calculated from the sample). 
 
Stated in terms of ρ, the discussion above says: 
• Negative ρ indicates a tendency for the variables X and Y to co-vary in a negative 

way. 
• Positive ρ indicates a tendency for the variables X and Y to co-vary in a positive way. 
• -1 ≤ ρ ≤ 1 
• ρ = -1 if and only if all pairs (X,Y) lie on a straight line with negative slope. 
• ρ = 1 if and only if all pairs (X,Y) lie on a straight line with positive slope. 
• ρ is unitless. 

• ρ is the Covariance of the standardized random variables 

! 

X "µ
X

#
X

 and 

! 

Y "µ
Y

#
Y

. 

(Details left to the student.) 
 
Also, from the definition, we see that ρ = 0 if and only if Cov(X,Y) = 0. 
 
Uncorrelated variables: We say that two random variables are uncorrelated if ρX,Y = 
0 (or equivalently, if Cov(X,Y) = 0).  
 
Examples:  
• If X and Y are independent, then they are uncorrelated. (Why?)  
• Suppose that the random variable X is uniform on the interval [-1, 1]. Let Y = X2. 

Then X and Y are uncorrelated, but not independent. (To see that X and Y are not 
independent, note that E(Y|X) is not constant. Details of why X and Y are 
uncorrelated will be on the next homework assignment.) 

 
In general, ρ is a measure of the degree of a nonconstant linear relationship between X 
and Y. Example 2 above shows that two variables can have a strong nonlinear 
relationship and still be uncorrelated. 
 
Sample variance, covariance, and correlation 
If we have a sample of data (x1,y1), (x2,y2), … , (xn,yn) from the joint distribution of X and 
Y, we can define the statistics 

 sample covariance  cov(x,y) (or Cov-hat(x,y)) = 

! 

1

n "1
(xi " x )(yi " y )

i=1

n

#  

and 

 sample correlation coefficient r (or 

! 

ˆ " ) = 

! 

cov( x, y)

sd(x)sd(y)
. 

These are estimators of the corresponding population parameters. We can establish 
properties of the sample covariance and correlation coefficient analogous to those of the 
population covariance and correlation coefficient.  


