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INFERENCE FOR MULTIPLE LINEAR REGRESSION 
 
Terminology: Similar to terminology for simple linear regression 
 

• 

! 

ˆ y i  = 

! 

ˆ " Tui ( ith fitted value or ith fit) 
• 

! 

ˆ e 
i
= yi -

! 

ˆ y i   (ith residual) 
• RSS = RSS(

! 

ˆ " ) = ∑( yi -

! 

ˆ y i)2 = ∑ 

! 

ˆ e 
i

2 (residual sum of squares) 
 
Results similar to those in simple linear regression: 
 

• 

! 

ˆ " j  is an unbiased estimator of 

! 

" j . 

• 

! 

ˆ " 
2 = 

! 

1

n " k
RSS  is an unbiased estimator of σ2. 

• 

! 

ˆ " 
2 is a multiple of a χ2 distribution with n-k degrees of freedom -- so we say  

! 

ˆ " 
2 and RSS have df = n-k. 

 
 Note: In simple regression, k = 2. 
 
Example: Haystacks 
 
Additional Assumptions Needed for Inference: 
 (3) Y|x is normally distributed 
  (Recall that this will be the case if X,Y are multivariate normal.) 
 (4) The yi's are independent observations from the Y|xi's. 
 
Consequences of Assumptions (1) - (4) for Inference for Coefficients: 

• Y|x ~ N(ηTu, σ2) 
• There is a formula for s.e.( 

! 

ˆ " j). (We'll use software to calculate it.) 

• 

! 

ˆ " j #" j

s.e.( ˆ " j)
 ~ t(n-k) for each j. 

 
Example: Haystacks 
 
Inference for Means: 
 
In simple regression, we saw  
 

 Var (

! 

ˆ E (Y|x)) = Var(

! 

ˆ E (Y|x)| x1, … , xn) = 

! 

" 2 1

n
+

x # x ( )
2

SXX

$ 

% 

& 
& 

' 

( 

) 
) . 

So 

 s.e (

! 

ˆ E (Y|x) =  

! 

ˆ " 
1

n
+

x # x ( )
2

SXX
 = 

! 

ˆ "  times a function of the xi's (but not the yi's) 
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An analogous computation (best done by matrices -- see Section 7.9) in the multiple 
regression model gives  
 Var (

! 

ˆ E (Y|x)) = Var(

! 

ˆ E (Y|x)| x1, … , xn) = hσ2, 
 
where h = h(u) ( = h(x) by abuse of notation) is a function of u1, u2, … , un, called the 
leverage. (The name will be explained later.) 
 
In simple regression,  

  h(x) = 

! 

1

n
+

x " x ( )
2

SXX
 

Note that 

! 

x " x ( )
2  (hence h(x) ) is a measure of the distance from x to 

! 

x . Similarly, in 
multiple regression, h(x) is a type of measure of the distance from u to the centroid 
 

  

! 

u  =  

! 

1

u 
1

.

.

.

u 
k"1

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

, 

 
(that is, it is a monotone function of 

! 

uj " u j( )#
2

.)  In particular: 
 

The further u is from 

! 

u , the larger Var (

! 

ˆ E (Y|x)) is, so the less precisely we can 
estimate E(Y|x) or y. (Thus an outlier could give a large h, and hence make 
inference less precise.) 

 
Example: 1 predictor 
 
Define: 
  s.e. (

! 

ˆ E (Y|x)) = 

! 

ˆ " 

! 

h(u)  
 
Summarizing: 
• The larger the leverage, the larger s.e. (

! 

ˆ E (Y|x)) is, so the less precisely we can 
estimate E(Y|x). 

• The leverage depends  just on the xi's, not on the yi's. 
 
Similarly to simple regression: 
 

! 

ˆ E (Y | x) - E(Y | x)

s.e.( ˆ E (Y | x)
 ~ t(n-k).  

Thus we can do hypothesis tests and find confidence intervals for the conditional 
mean response E(Y|x) 
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Prediction: Results are similar to simple regression: 
 
• Prediction error = Y|x - 

! 

ˆ E (Y|x) 
• Var(Y|x - 

! 

ˆ E (Y|x)) = σ2(1 +h(u)) = σ2 + Var(E(Y|x)) 
• Define s.e. (Ypred|x) = 

! 

ˆ " 1+ h  

• 

! 

Y | x " ˆ E (Y | x)

se(y pred | x)
 ~ t(n-k),so we can form prediction intervals. 

 
Example: Haystacks 
 
 

 
 
   
 
 


