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INFERENCE FOR SIMPLE OLS  
 
Model Assumptions ("The" Simple Linear Regression Model Version IV): 
(We consider x1, … , xn as fixed.) 
1. E(Y|x) = η0 + η1x      (linear mean function) 
2. Var(Y|x) = σ2 (Equivalently, Var(e|x) = σ2)  (constant variance) 
3. y1, … , yn are independent observations.    (independence) 
4. (NEW) Y|x is normal for each x    (normality) 
 
 
(1) + (2) + (4) can be summarized as: 
 
  Y|x ~ N(η0 + η1x, σ2) 
 
Recall:  e|x = Y|x - E(Y|x) 
 
So:  e|x ~ N(0, σ2) 
 
i.e., all errors have the same distribution --  so we just say e instead of e|x . 
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normally distributed random variables (that is, their sampling distributions are normal). 
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Look more at 
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 ~ N(0,1) 

 
But we don't know σ2, so need to approximate it by 
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expect this to be normal, too. However, 
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The numerator of the last fraction is normal (in fact, standard normal), as noted above. 
 
Facts: (Proofs omitted) 

 a. (n-2)
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 has a χ2 distribution with n-2 degrees of freedom 

   Notation:  (n-2)
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- η1 (hence independent of the numerator in (*) ) 

 
Comments on distributions: 
 
1. A χ2(k) distribution is defined as the distribution of a random variable which is a sum 
of squares of k independent standard normal random variables. 
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is a sum of n 

squares; the fact quoted above says that it can also be expressed as a sum of n-2 squares 
of independent standard normal random variables.] 
 
2. A t-distribution with k degrees of freedom is defined as the distribution of a random 

variable of the form 
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k

 where 

• Z~N(0,1) 
• U~ χ2(k) 
• Z and U are independent. 
 
In the fraction (*) above, take 
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Thus:    
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 ~ t(n-2), 

 

so we can do inference on  η1, using t = 
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 as our test statistic. 

 
Inference on η0  
 
With the same assumptions, it can be shown in an analogous manner (details omitted) 
that 
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 ~ t(n-2), 

so we can use this statistic to do inference on η0. 
 
 
 


