REGRESSION MODELS

One approach: Use theoretical considerations to develop a model for the mean function or other aspects of the conditional distribution.

The next two approaches require some terminology:

- Error: e|x = Y|(X = x) E(Y|X = x)= Y|x - E(Y|x) for short
 - So Y|x = E(Y|x) + e|x (Picture this ...)
 - elx is a random variable
 - E(e|x) = E(Y|x) E(Y|x)) = E(Y|x) E(Y|x) = 0
 - Var(e|x) =
 - The distribution of elx is

Second approach:

Bivariate Normal Model: Suppose X and Y have a bivariate normal distribution.

Recall:

Ylx is normal
E(Y| x) = μ_Y + ρ σ_Y/σ_X (x - μ_X) (linear mean function)
Var(Ylx) = σ_Y²(1 - ρ²) (constant variance)

Thus:

• E(Y|x) = a + bx• $Var(Y|x) = \sigma^2$ where b =

a =

 $\sigma^2 =$

Implications for elx:

• $e|x \sim$

"The" Simple Linear Regression Model

Version 1:

Only one assumption: E(Y|x) is a linear function of x.

Typical notation: $E(Y|x) = \eta_0 + \eta_1 x$ (or $E(Y|x) = \beta_0 + \beta_1 x$)Equivalent formulation: $Y|x = \eta_0 + \eta_1 x + e|x$ Interpretations of parameters:(Picture!) η_1 :(if η_1)

 η_0 :

(if ...)

When model fits:

- X, Y bivariate normal
- Other situations Example: Blood lactic acid Why is this not bivariate normal?
- Model might also be used when mean function is not linear, but linear approximation is reasonable.

Version 2: *Two assumptions*:

- 1. $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)
- 2. $Var(Y|x) = \sigma^2$ (constant variance)

Equivalent formulation: 1'. $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function) 2': $Var(e|x) = \sigma^2$ (constant error variance) raw a picture!

[Draw a picture!]

Situations where the model fits:

- If X and Y have a bivariate normal distribution.
- Credible (at least approximately) in many other situations as well, for transformed variables if not for the original predictor. (i.e., it's often useful)

Until/unless otherwise stated, we will henceforth assume the Version 2 model -- i.e., we will assume conditions (1) and (2) (equivalently, (1') and (2').)

Thus we have *three parameters*:

 η_0,η_1 (which determine E(Ylx) and σ^2 (which determines Var(Ylx)

The goal: To estimate η_0 and η_1 (and later σ^2) from data.

Notation: The estimates of η_0 and η_1 will be called $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively. From $\hat{\eta}_0$ and $\hat{\eta}_{l}$, we obtain an estimate

$$\hat{\mathbf{E}}(\mathbf{Y}|\mathbf{x}) = \hat{\eta}_0 + \hat{\eta}_1 \mathbf{x}$$

of E(Y|x).

Note: $\hat{E}(Y|x)$ is the same notation we used earlier for the lowess estimate of E(Y|x). Be sure to keep the two estimates straight.

More terminology:

- We label our data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- $\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 x_i$ is our resulting estimate $\hat{E}(Y|x_i)$ of $E(Y|x_i)$. It is called the i^{th} *fitted value* or *ith fit. ê_i* = y_i - ŷ_i is called the *ith residual.*

Note: \hat{e}_i (the residual) is analogous to but not the same as elx_i (the error). Indeed, \hat{e}_i can be considered an estimate of the error $e_i = y_i - E(Y|x_i)$.

Draw a picture:

Least Squares Regression: A method of obtaining estimates $\hat{\eta}_0$ and $\hat{\eta}_1$ for η_0 and η_1

Consider lines $y = h_0 + h_1 x$. We want the one that is "closest" to the data points (x_1, y_1) , $(x_2, y_2), \ldots, (x_n, y_n)$ collectively.

What does "closest" mean?

Various possibilities:

1. The usual math meaning: shortest perpendicular distance to point.

Problems:

- Gets unwieldy quickly.
- We're really interested in getting close to y for a given x -- which suggests:
- 2. Minimize $\sum d_i$, where $d_i = y_i (h_0 + h_1 x_i) =$ vertical distance from point to candidate line. (Note: If the candidate line is the desired best fit then $d_i = \dots$) Problem: Some d_i 's will be positive, some negative, so will cancel out in the sum. This suggests:
- 3. Minimize $\sum |d_i|$. This is feasible with modern computers, and is sometimes done. Problems:
 - This can be computationally difficult and lengthy.
 - The solution might not be unique. Example:
 - The method does not lend itself to inference about the fit.

4. Minimize $\sum d_i^2$

This works! See demo.

Terminology:

- $\sum_{i=1}^{\infty} d_i^2$ is called the *residual sum of squares* (denoted *RSS*(h_0, h_1)) or the *objective function*.
- The values of h_0 and h_1 that minimize RSS(h_0 , h_1) are denoted $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively, and called the *ordinary least squares* (or *OLS*) *estimates* of η_0 and η_1