
 ROBUSTNESS 
 
Our model for simple linear regression has four assumptions: 
 
1. Linear mean function: E(Y|x) = η0 + η1x 
 
2.Constant variance of conditional distributions: Var(Y|x) = σ2 (constant variance) 

 
(Equivalently: Constant variance of conditional errors: Var(e|x) = σ2) 

 
3. Independence of observations: y1, … , yn are chosen independently  from Y|x1, Y|x2, 
…, Y|xn, respectively. 
 
4. Y|x is normal for each x (or at least for each xi and for each x where we wish to do 
inference.) 
 
Robustness  is the question of how valid our procedures are if the model doesn't exactly 
fit. 
 
Robustness to departures from linearity: 
• Not all relationships are linear, but sometimes a linear model can be useful even if the 

relationship is known not to be linear. (e.g., to check for an increasing or decreasing 
trend, or as a good-enough approximation.) However, results need to be interpreted 
appropriately. 

• Remember that a high R2 does not mean that the relationship is linear. 
• Often we can transform to linearity to get a better model fit. [More later] 
• Outliers (observations that don't fit the general pattern of the data) can have a strong 

influence on the least squares fit. 
 

Wise practice: If there is just one predictor, always look at a scatter plot before 
calculating a simple linear regression -- and make decisions about transforming 
variables and whether or not to include outliers in the analysis. 

 
Robustness to departures from constant variance:  
• 

! 

ˆ " 
0
 and

! 

ˆ " 
1
 are still unbiased estimators of η0 and η1. 

• Since the constant variance assumption was important in inference, the inference 
procedures are not reliable in the presence of non-constant variance 
("heteroskedasticity"). Another good reason to plot data. 

• Possible remedies for nonconstant variance: 
1. Transform to constant variance 
2. Weighted least squares (Chapter 9) 
 
 
 
 
 



Robustness to departures from independence of observations: 
• 

! 

ˆ " 
0
 and

! 

ˆ " 
1
 are still unbiased estimators of η0 and η1. 

• Since independence of observations was used in developing inference procedures, the 
inference procedures are not reliable. 

• However, if observations are "almost independent," it's probably OK to use inference 
procedures   
Important example: We often sample with replacement, which does not give 
independent observations -- but with large populations, the covariances are negligible. 
 
Robustness to departures from normality 

• 

! 

ˆ " 
0
 and

! 

ˆ " 
1
 are still unbiased estimators of η0 and η1. 

• Since normality of conditional distributions was used in developing inference 
procedures, the inference procedures might be questioned. 

• However, if n is large, the Central Limit Theorem implies that the sampling 
distributions of the estimates are approximately normal. 

 
Empirical Rule of Thumb: Inference for 

! 

ˆ " 
0
, 

! 

ˆ " 
1
, and 

! 

ˆ E (Y|x) is approximately valid 
unless n is small and the distributions of the Y\x's are strongly skewed or bimodal. 
 
However:  

a. The inference procedures are not as powerful -- i.e., they are not as good 
at distinguishing between close values -- so they are less likely to show 
evidence against NH when NH is false. 
Thus: Transforming to (or close to) normality is still desirable. [more later] 
 
b. Prediction is less robust -- since y may dominate in prediction. 

 
 
 


