Situation:

Assumption: $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Least squares estimator: $\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$, where

$$\hat{\eta}_{l} = \frac{SXY}{SXX} \qquad \hat{\eta}_{0} = \overline{y} - \hat{\eta}_{l} \overline{x}$$

$$SXX = \sum (x_{i} - \overline{x})^{2} = \sum x_{i}(x_{i} - \overline{x})$$

$$SXY = \sum (x_{i} - \overline{x})(y_{i} - \overline{y}) = \sum (x_{i} - \overline{x})y_{i}$$

Comment: If we also assume elx (equivalently, Ylx) is normal with constant variance, then the least squares estimates are the same as the maximum likelihood estimates of η_0 and η_1 .

Properties of $\hat{\eta}_0$ and $\hat{\eta}_1$:

1)
$$\hat{\eta}_{1} = \frac{SXY}{SXX} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})y_{i}}{SXX} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{SXX}y_{i} = \sum_{i=1}^{n} c_{i}y_{i}$$

where $c_{i} = \frac{(x_{i} - \overline{x})}{SXX}$

Thus: If the x_i 's are fixed (as in the blood lactic acid example), then $\hat{\eta}_i$ is a linear combination of the y_i 's.

Note: Here we want to think of each y_i as a random variable with distribution $Y|x_i$. Thus, if each $Y|x_i$ is normal, then $\hat{\eta}_i$ is also normal. If the $Y|x_i$'s are not normal but n is large, then $\hat{\eta}_i$ is approximately normal. This will allow us to do inference on $\hat{\eta}_i$. (Details later.)

2) $\sum c_i = \sum \frac{(x_i - \overline{x})}{SXX} = \frac{1}{SXX} \sum (x_i - \overline{x}) = 0$ (as seen in establishing the alternate expression for SXX)

3)
$$\sum \mathbf{x}_i \mathbf{c}_i = \sum \mathbf{x}_i \frac{(x_i - \overline{x})}{SXX} = \frac{1}{SXX} \sum x_i (x_i - \overline{x}) = \frac{SXX}{SXX} = 1.$$

Remark: Recall the analogous properties for the residuals \hat{e}_i .

4) $\hat{\eta}_0 = \overline{y} - \hat{\eta}_1 \overline{x} = \frac{1}{n} \sum_{i=1}^n y_i - \sum_{i=1}^n c_i y_i \overline{x} = \sum_{i=1}^n (\frac{1}{n} - c_i \overline{x}) y_i$, also a linear combination of the y_i's,

hence ...

5) The sum of the coefficients in (4) is
$$\sum_{i=1}^{n} \left(\frac{1}{n} - c_i \overline{x}\right) = \sum_{i=1}^{n} \left(\frac{1}{n}\right) - \overline{x} \sum_{i=1}^{n} c_i = n\left(\frac{1}{n}\right) - \overline{x} 0 = 1.$$

Sampling distributions of $\hat{\eta}_0$ and $\hat{\eta}_1$:

Consider x_1, \ldots, x_n as fixed (i.e., condition on x_1, \ldots, x_n).

Model Assumptions ("The" Simple Linear Regression Model Version III):

•	$E(Y x) = \eta_0 + \eta_1 x$	(linear mean function)
٠	$Var(Y x) = \sigma^2$ (Equivalently, $Var(e x) = \sigma^2$)	(constant variance)
•	(<i>NEW</i>) y_1, \ldots, y_n are independent observations.	(independence)

The new assumption means we can consider y_1, \ldots, y_n as coming from n independent random variables Y_1, \ldots, Y_n , where Y_i has the distribution of $Y|x_i$.

Comment: We do *not* assume that the x_i 's are distinct. If, for example, $x_1 = x_2$, then we are assuming that y_1 and y_2 are independent observations from the same conditional distribution $Y|x_1$.

Since y_1, \ldots, y_n are random variables, so is $\hat{\eta}_1$ -- but it depends on the choice of x_1, \ldots, x_n , so we can talk about the conditional distribution $\hat{\eta}_1 | x_1, \ldots, x_n$.

Expected value of $\hat{\eta}_{l}$ (as the y's vary):

$$\begin{split} \mathrm{E}(\hat{\eta}_{l}|\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}) &= \mathrm{E}(\sum_{i=1}^{n} c_{i} y_{i} | \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}) \\ &= \sum_{i} c_{i} \mathrm{E}(y_{i} | \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}) \\ &= \sum_{i} c_{i} \mathrm{E}(y_{i} | \mathbf{x}_{i}) \qquad (\text{since } y_{i} \text{ depends only on } \mathbf{x}_{i}) \\ &= \sum_{i} c_{i} (\eta_{0} + \eta_{1} \mathbf{x}_{i}) \qquad (\text{model assumption}) \\ &= \eta_{0} \sum_{i} c_{i} + \eta_{1} \sum_{i} c_{i} \mathbf{x}_{i} \\ &= \eta_{0} 0 + \eta_{1} 1 = \eta_{1} \end{split}$$

<u>Thus</u>: $\hat{\eta}_1$ is an unbiased estimator of η_1 .

Variance of $\hat{\eta}_{l}$ (as the y's vary):

$$\operatorname{Var}(\hat{\eta}_{1}|\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) = \operatorname{Var}(\sum_{i=1}^{n} c_{i} y_{i} | \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(y_{i}|\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

$$= \sum_{i} c_{i}^{2} \operatorname{Var}(y_{i}|x_{i})$$

$$= \sum_{i} c_{i}^{2} \sigma^{2}$$

$$= \sigma^{2} \sum_{i} c_{i}^{2}$$

$$= \sigma^{2} \sum_{i} \left(\frac{(x_{i} - \overline{x})}{SXX} \right)^{2}$$

$$= \frac{\sigma^{2}}{(SXX)^{2}} \sum_{i} (x_{i} - \overline{x})^{2}$$

$$= \frac{\sigma^{2}}{SXX}$$

(definition of c_i)

For short: $Var(\hat{\eta}_i) = \frac{\sigma^2}{SXX}$

$$\therefore$$
 s.d.($\hat{\eta}_1$) = $\frac{\sigma}{\sqrt{SXX}}$

Comments: This is vaguely analogous to the sampling standard deviation for a mean \overline{y} : s.d. (estimator) = $\frac{population \ standard \ deviation}{population}$

$$\sqrt{something}$$

However, here the "something," namely SXX, is more complicated. However, we can still analyze this formula to see how the standard deviation varies with the conditions of sampling. For \overline{y} , the denominator is the square root of n, so we see that as n becomes larger, the sampling standard deviation of \overline{y} gets smaller. Here, recalling that SXX = $\sum (x_i - \overline{x})^2$, we reason that:

- If the x_i's are far from x̄, SXX is _____, so s.d.(η̂_i) is _____.
 If the x_i's are close to x̄, SXX is _____, so s.d.(η̂_i) is _____.

Thus if you are designing an experiment, choosing the x_i's to be _____ from their mean will result in a more precise estimate of $\hat{\eta}_i$. (Assuming the linear model fits!)

Expected value and variance of $\hat{\eta}_0$:

Using the formula $\hat{\eta}_0 = \sum_{i=1}^n (\frac{1}{n} - c_i \overline{x}) y_i$, calculations (left to the interested student) similar

to those for $\hat{\eta}_1$ will show: • $E(\hat{\eta}_0) = \eta_0$ (So $\hat{\eta}_0$ is an unbiased estimator of η_0 .)

• Var
$$(\hat{\eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{SXX} \right)$$
, so
s.d $(\hat{\eta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}$

Analyzing the variance formula:

- The variance of $\hat{\eta}_0$ is ______ than the variance of $\hat{\eta}_1$. \rightarrow Does this agree with intuition?
- A larger sample size tends to give a _____ variance for $\hat{\eta}_0$.
- A larger \overline{x} gives a _____ variance for $\hat{\eta}_0$. \rightarrow Does this agree with intuition?
- The spread of the x_i's affects the variance of $\hat{\eta}_0$ in the same way it affects the variance of $\hat{\eta}_1$.

Covariance of $\hat{\eta}_0$ and $\hat{\eta}_1$: Similar calculations (left to the interested student) will show

$$\operatorname{Cov}(\hat{\eta}_0, \hat{\eta}_1) = -\sigma^2 \frac{\overline{x}}{SXX}$$

Thus:

• $\hat{\eta}_0$ and $\hat{\eta}_1$ are not independent

 \rightarrow Does this agree with intuition?

• The sign of $\text{Cov}(\hat{\eta}_0, \hat{\eta}_1)$ is opposite that of \overline{x} . \rightarrow Does this agree with intuition?

Estimating σ^2 : To use the variance formulas above for inference, we need to estimate σ^2 (= Var(Ylx_i), the same for all i).

First, some plausible reasoning: *If* we had lots of observations $y_{i_1}, y_{i_2}, ..., y_{i_m}$ from Ylx_i, then we could use the univariate standard deviation

$$\frac{1}{m-1} \sum_{j=1}^{m} (y_{i_j} - \bar{y}_i)^2$$

of these m observations to estimate σ^2 . (Here \overline{y}_i is the mean of $y_{i_1}, y_{i_2}, ..., y_{i_m}$, which would be our best estimate of E(Y| x_i) just using $y_{i_1}, y_{i_2}, ..., y_{i_m}$)

We don't typically have lots of y's from one x_i , so we might try (reasoning that $\hat{E}(Y | x_i)$) is our best estimate of $E(Y | x_i)$)

$$\frac{1}{n-1} \sum_{i=1}^{n} [y_i - \hat{E}(Y \mid x_i)]^2$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} \hat{e}_i^2$$
$$= \frac{1}{n-1} RSS.$$

However (just as in the univariate case, we need a denominator n-1 to get an unbiased estimator), a lengthy calculation (omitted) will show that

 $E(RSS|x_1, ..., x_n) = (n-2) \sigma^2$ (where the expected value is over all samples of the y_i's with the x_i's fixed)

Thus we use the estimate

$$\hat{\sigma}^2 = \frac{1}{n-2}RSS$$

to get an unbiased estimator for σ^2 :

$$E(\hat{\sigma}^2|x_1,\ldots,x_n) = \sigma^2.$$

[If you like to think heuristically in terms of losing one degree of freedom for each calculation from data involved in the estimator, this makes sense: Both $\hat{\eta}_0$ and $\hat{\eta}_1$ need to be calculated from the data to get RSS.]

Standard Errors for $\hat{\eta}_0$ and $\hat{\eta}_1$: Using

$$\hat{\sigma} = \sqrt{\frac{RSS}{n-2}}$$

as an estimate of σ in the formulas for s.d $(\hat{\eta}_0)$ and s.d $(\hat{\eta}_1)$, we obtain the *standard errors*

s.e.
$$(\hat{\eta}_1) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

and

s.e.(
$$\hat{\eta}_0$$
) = $\hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}$

as estimates of s.d ($\hat{\eta}_1$) and s.d ($\hat{\eta}_0$), respectively.