WEIGHTED LEAST SQUARES

Model assumptions:

- 1. $E(Y|\underline{x}_i) = \underline{n}^T \underline{u}_i$ (linear mean function -- as for ordinary least squares)
- 2. Var(Y| \underline{x}_i) = σ^2/w_i , where the w_i 's are known, positive constants (called *weights*)

(Different from OLS!)

Observe:

- w_i is inversely proportional to Var(Y|<u>x</u>_i). This is sometimes helpful in getting suitable w_i's.
- the w_i's aren't unique we could multiply all of them by a constant c, and divide σ by \sqrt{c} to get an equivalent model.

For WLS, the *error* is defined as

 $\mathbf{e}_{i} = \sqrt{w_{i}} \left[\mathbf{Y} | \underline{\mathbf{x}}_{i} - \underline{\mathbf{\eta}}^{\mathrm{T}} \underline{\mathbf{u}}_{i} \right]$ (Different from OLS!)

Then (exercise)

 $E(e_i) = 0$ Var(e_i) = σ^2

Reformulating (1) in terms of errors:

1': Y| $\underline{\mathbf{x}}_i = \underline{\mathbf{\eta}}^{\mathrm{T}} \underline{\mathbf{u}}_i + \mathbf{e}_i / \sqrt{w_i}$

<u>Note</u>: WLS is not a universal remedy for non-constant variance, since weights are needed. But it is useful in many types of situations, e.g.,

A. If $Y|\underline{x}_i$ is the <u>sum</u> of m_i independent observations, each with variance σ^2 , then $Var(Y|\underline{x}_i) = 0$, so we could take $w_i = 0$.

B. If $Y|\underline{x}_i$ is the <u>average</u> of m_i independent observations, each with variance σ^2 , then $Var(Y|\underline{x}_i) = \underline{\qquad}$, so we could take $w_i = \underline{\qquad}$.

C. Sometimes visual or other evidence suggests a pattern of how $Var(Y|\underline{x}_i)$ depends on x_i . For example, if it looks like $\sqrt{Var(Y|x_i)}$ is a linear function of x_i [Sketch a picture of this!], then we can fit a line to the data points (x_i , s_i), where $s_i =$ sample mean of observations with x value x_i . If we get

 $\hat{s}_i = \hat{\gamma}_0 + \hat{\gamma}_1 x_i$, try $\mathbf{W}_i =$ _____

D. Sometimes theoretical considerations may suggest a choice of weights. (e.g., theoretical considerations might suggest that the conditional distributions are Poisson, which implies that their variances are equal to their means. This would suggest taking $w_i =$ _____.)

E. Weighted least squares is also useful for other purposes – e.g., in calculating the lowess estimate, lines are fit so that points at the ends of the range count less than points at the middle of the range.

A WLS model may be fit by least squares: Find $\hat{\eta}$ to minimize the "weighted residual sum of squares"

 $RSS(\underline{h}) = \sum w_i (y_i - \underline{h}^T \underline{u}_i)^2$ $\hat{\underline{\eta}}$ is called the "WLS estimate" of the coefficients.

Comments:

- the $\sqrt{w_i}$ y's on the $\sqrt{w_i}$ u's, but, we would need to fit without an intercept, since the first component of $\sqrt{w_i} \underline{u}_i$ is. However, most software will fit a WLS if given the weights.

Example: Coin data.