Random variables $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ are said to have a bivariate normal distribution if their joint pdf has the form

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right]
$$

(Here, $\left.\exp (u)=e^{u}.\right)$

- Compare and contrast with the pdf of the univariate normal:

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

- The five parameters completely determine the distribution (if it is known to be bivariate normal).
- There are lots of bivariate normal distributions
- The pdf is symmetric (suitably interpreted) in the two variables.

Properties: (Calculations left to the interested student)

1. $\quad X_{1} \sim N\left(\mu_{1}, \sigma_{1}\right) \quad$ (What calculation needed?)
2. $\quad X_{2} \sim N\left(\mu_{2}, \sigma_{2}\right) \quad$ (What calculation needed?)
3. $\quad \rho=\rho_{X_{1}, X_{2}} \quad$ (What calculation needed?)

Note:

- If you know that a distribution is bivariate normal, and know its marginal distributions, do you know the joint distribution?
- A bivariate distribution might have both marginals normal, but not be bivariate normal.

Example: X and Z independent standard normal.

$$
Y=\left\{\begin{array}{c}
Z \text { if } X Z>0 \\
-Z \text { if } X Z<0
\end{array}\right.
$$

Try sketching a sample from the bivariate distribution of X and Y .

## One way bivariate normals arise:

Theorem: If X and Y are independent normal random variables and if $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ are each linear combinations of $X$ and $Y$ (e.g., if $X_{1}=X$ and $X_{2}=Y$ ), then $X_{1}$ and $X_{2}$ are bivariate normal.

Consequence: By the Central Limit Theorem and empirical observation, (approximate) normals occur often in nature -- hence also (approximate) bivariate normals.

Also: Many jointly distributed variables can be transformed to (approximately) bivariate normal.

Standard bivariate normal: $\mu_{1}=\mu_{2}=0, \sigma_{1}=\sigma_{2}=1$.

- So marginals are $\qquad$
- Any $\rho$ between -1 and 1 is possible.
- So different standard bivariate normals have the same marginals.

Uncorrelated bivariate normals: $\rho=0$ implies:

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left[-\frac{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{2}\right] \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left[-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
& =f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
\end{aligned}
$$

which implies $\qquad$
Thus: Bivariate normal plus uncorrelated implies $\qquad$
Contours: In the special case of uncorrelated variables:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{c} \text { (constant) says } \\
& \left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}=\mathrm{k} \quad\left[=-2 \ln \left(2 \pi \sigma_{1} \sigma_{2}\right), \text { another constant }\right],
\end{aligned}
$$

which describes $\qquad$ .

If also the joint distribution is standard normal, then the contour lines are $\qquad$ .

Will this happen any other time?

If $\rho \neq 0$, then (details left to the interested student) the contours will have equations of the form

$$
\mathrm{k}=\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2} .
$$

The contours are $\qquad$
Special case of standard normal (other cases can be obtained by translating and scaling these):

$$
k=x^{2}-2 \rho x y+y^{2}
$$

If $\rho=0$, these are $\qquad$ _.

If $\rho \neq 0$, these are ellipses tilted at a $45^{\circ}$ angle to the coordinate axes, with lengths

$$
\begin{aligned}
& \sqrt{\frac{k}{2(1-\rho)}} \text { in the SW-NE direction } \\
& \sqrt{\frac{k}{2(1+\rho)}} \text { in the NW-SE direction. }
\end{aligned}
$$

(This is not obvious!)
Thus:
If $\rho$ is close to 1 , the ellipse is long in the $\qquad$ direction.
If $\rho$ is close to -1 , the ellipse is long in the $\qquad$ direction.

