INFERENCE FOR MULTIPLE LINEAR REGRESSION

Terminology: Similar to terminology for simple linear regression

A

s J.=10'y ( i" fitted value or i" fit)
* ¢=Yy; -y, (i" residual)
* RSS=RSS(1) =3(yi-9)’' =2 e° (residual sum of squares)

Results similar to those in simple linear regression:

* 7 ; 1s an unbiased estimator of 7).

e 46°= RSS is an unbiased estimator of o°.

n —
? is a multiple of a * distribution with n-k degrees of freedom -- so we say
* and RSS have df = n-k.
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Note: In simple regression, k = 2.
Example: Haystacks

Additional Assumptions Needed for Inference:
(3) Ylx is normally distributed
(Recall that this will be the case if X,Y are multivariate normal.)
(4) The y,'s are independent observations from the YIx;'s.

Consequences of Assumptions (1) - (4) for Inference for Coefficients:

* Ylix~Nn'u, 6%

* There is a formula for s.e.( ) ;) (We'll use software to calculate it.)
n=n;

se.(1];)

~ t(n-k) for each j.

Example: Haystacks
Inference for Means:

In simple regression, we saw

. ~ . 1 (x-%)°
Var (E(YIx)) = Var(E(YIx)| X, ... , X,) = O (n SXX
So
1 (x-3)
s.e (E(le) = n XX

= ¢ times a function of x and the x;'s (but not the y,'s)



An analogous computation (best done by matrices -- see Section 7.9) in the multiple
regression model gives

Var (E(YIx)) = Var(E(YIX)l x,, ..., x,) = ho?,

where h = h(u) ( = h(x) by abuse of notation) is a function of u,, u,, ..., u,, called the
leverage. (The name will be explained later.)

In simple regression,

—\2
hx) = L4 =)
n SXX
Note that (x -X )2 (hence h(x) ) is a (non-linear) measure of the distance from x to X .

Similarly, in multiple regression, h(x) is a type of measure of the distance from u to the
centroid
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(that is, it is a monotone function of 2 (u = ﬁj) .) In particular:

The further u is from u, the larger Var (I:Z (Ylx)) is, so the less precisely we can
estimate E(YIx) or y. (Thus an outlier could give a large h, and hence make
inference less precise.)

Example: 1 predictor

Define: R
s.e. (E(YIX)) = 6 h(u)

Summarizing:

* The larger the leverage, the larger s.e. (I:Z (Ylx)) is, so the less precisely we can
estimate E(YIx).
* The leverage depends just on the x;'s, not on the y;'s.

Similarly to simple regression:

E(Y I x)- E(Y|
VINBYY
s.e.(E(Y Ix)
Thus we can do hypothesis tests and find confidence intervals for the conditional
mean response E(YIx)




Prediction: Results are similar to simple regression:

¢ Prediction error = YIX - E (Ylx)
* Var(Ylx - I:Z(YIK)) = 0(1 +h(u)) = 0 + Var(E(Ylx))
* Define s.e. (Y,lx) = Ovl+h

Yix-EX lx)

~ t(n-k),so we can form prediction intervals.
se(ypred Il)

Example: Haystacks



