MORE ON LEVERAGE AND VARIANCES OF RESIDUALS

(Reference: Section 7.6.3)

Recall: In simple linear regression, to establish that $Var(y - \hat{y}|x) = \sigma^2(1 + \text{leverage})$ for a new observation from Ylx, we reasoned that since y and \hat{y} are independent,

$$Var(y - \hat{y}|x) = \sigma^2 + Var(\hat{y}|x) = \sigma^2 + Var(\hat{E}(Y|x))$$

We *cannot* apply this to find $Var(y_i - \hat{y}_i | x)$. Why not?

Instead, we need to go through a procedure much like that in finding $Var(\hat{E}(Y|x))$, taking covariances into account. The result, generalized to multiple regression:

$$\operatorname{Var}(\hat{e}_i | \underline{\mathbf{x}}) = \sigma^2 (1 - h(\underline{\mathbf{u}}_i))$$

Notation: $h_i = h_{ii} = h(\underline{u}_i)$ (= $h(\underline{x}_i)$ by abuse of notation) is called the *i*th leverage.

So: $Var(\hat{e}_i) = \sigma^2 (1 - h_i)$

Consequence: Since $Var(\hat{e}_i) \ge 0$,

 $h_i \le 1$.

Note:

i) h could be > 1 for other values of \underline{x} . ii) h ≥ 0 since Var (Ê(Yl \underline{x})) = h σ^2

Practical consequence: If h_i is close to 1 (which is large for a leverage), then $Var(\hat{e}_i)$ is small. Recalling that $E(\hat{e}_i) = 0$, this implies that \hat{e}_i is small -- so the least squares fit is close to (\underline{u}_i , y_i). In other words:

If h_i is close to 1, then \underline{x}_i is influential.

Thus it is advisable to check leverages to identify possible influential observations.