
MULTIVARIATE DISTRIBUTIONS 
 
If we have several random variables, say X1, X2, … , Xm, we may talk about their joint 
distribution and their joint pdf. The latter is a function f(x1, x2, … , xm) such that for any 
region R in m-space,  
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Special Case: Multivariate normal distribution. The pdf is of the form 
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 is the vector of means of the Xi's, and ∑ is an m x m matrix 

called the covariance matrix. (The superscript T denotes the matrix transpose.) This 
generalizes the bivariate normal distribution, with pdf 
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as can be seen by taking ∑ = 
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is the covariance of X1 

and X2; in the general case, the i,jth entry of the covariance matrix will be the covariance 
of Xi and Xj.) 
 
Properties of multivariate normal distributions: 
 
Recall that if X1 and X2 are bivariate normal, then each Xi is normal, and  
E(X1| X2) = a + bX2. These properties generalize: 
 
 
 
 



If X1, X2, … , Xm are (jointly) multivariate normal, then: 
1. Any subset of these variables is also (multivariate) normal. 
2. Each conditional mean obtained by conditioning one variable on a subset of the other 
variables is a linear function of the remaining variables -- e.g.,  
 E(X1 | X2, … , Xm) = α0 + α2X2+ … +αm Xm. 
 
Consequences for Regression: 
 
1. If X1, X2, … , Xp, Y are multivariate normal, then each subset of X1, X2, … , Xp, Y is 
also (multivariate) normal. 
2. For each subset of X1, X2, … , Xp, the conditional mean of Y conditioned on those 
variables is a linear function of those variables. In particular 

• E(Y| X1, X2, … , Xp) is a linear function of X1, X2, … , Xp (i.e., a linear model 
fits) 

• Even if we drop some predictors, a linear model fits. 
• For a single j, E(Y|xj) = a + bxj. 

This gives a way of checking if X1, X2, … , Xp, Y are not normal: If even one marginal 
response plot clearly indicates that the corresponding mean function is not linear, then X1, 
X2, … , Xp, Y are not multivariate normal. 
 
Caution: The converse is not true -- the marginal response plots might all be linear, 
without having the variables be multivariate normal. 
 
 


