What if we want to estimate Ylx not just E(Y|x)? The only estimator available is

 $\hat{y} = \hat{\eta}_0 + \hat{\eta}_1 \mathbf{x} - \mathbf{x}$

the same estimator we used for E(Ylx), calling it $\hat{E}(Y|x)$.

Intuitively, we should not be able to estimate Y as closely as E(Y|x): Estimating E(Y|x) involves *sampling error* only, but estimating Y|x must take into account the *natural variability of the distribution Y|x* as well as sampling error.

[Try drawing a picture to illustrate this.]

The increased variability in estimating Y as compared to estimating E(Y|x) requires us to use a different standard error.

To help avoid confusion, estimating Y is called *prediction*. (Unfortunately, this produces possible new confusion: sometimes people think that regression prediction must involve the future, or that it is exact.) Similarly, the estimate is sometimes called y_{pred} rather than \hat{y} (so $y_{pred} = \hat{\eta}_0 + \hat{\eta}_1 x$), and the associated error is called *prediction error*:

Prediction error: For a *new* (or additional) observation y chosen from Ylx independently of y_1, \ldots, y_n , we define

Prediction error = $y - \hat{E}(Y|x) (= y - \hat{y})$

- Draw a picture
- Compare and contrast with the error elx and the residuals \hat{e}_i
- Prediction error is a random variable -- its value depends on the choice of y_1, \ldots, y_n , and y

For fixed x,

 $E(\text{prediction error}) = E(Y|x - \hat{E}(Y|x)) = _$

Also,

$$Var(prediction error) = Var(Y|x - \hat{E}(Y|x)|x_1, ..., x_n)$$

= Var(Y|x, x_1, ..., x_n) + Var($\hat{E}(Y|x)|x_1, ..., x_n$)) (Why?)
= Var(Y|x) + Var($\hat{E}(Y|x)|x_1, ..., x_n$))

$$= \sigma^{2} + \operatorname{Var}(\hat{E}(Y|x)) \quad \text{for short}$$
$$= \sigma^{2} + \sigma^{2} \left(\frac{1}{n} + \frac{(x - \overline{x})^{2}}{SXX} \right)$$
$$\sigma^{2} \left(1 + \frac{1}{n} + \frac{(x - \overline{x})^{2}}{SXX} \right)$$

Define: se(y_{pred}|x) =
$$\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}}$$

= $\sqrt{\hat{\sigma}^2 + V\hat{a}r(\hat{E}(Y \mid x))}$

Sampling Distribution of Prediction Error:

- $\hat{E}(Y|x)$ is a linear combination of the y_i 's \Rightarrow y|x $\hat{E}(Y|x)$ is a linear combination of y and the y_i 's.
- This plus independence and normality assumptions on ylx and the yi's \Rightarrow ylx $\hat{E}(Y|x)$ is normally distributed.
- It can be shown that this implies that

$$\frac{Y \mid x - \hat{E}(Y \mid x)}{se(y_{pred} \mid x)} \sim t(n-2).$$

Thus we can use this statistic to calculate a *prediction interval* (or "confidence interval for prediction") for y.

Recall: A 90% *confidence* interval for the conditional mean E(Y|x) is an interval produced by a process which, for 90% of all independent random samples y_1, \ldots, y_n taken from $Y|x_1, \ldots, Y|x_n$, respectively, yields an interval containing the <u>parameter</u> E(Y|x) (assuming all model assumptions fit).

Compare and contrast: A 90% *prediction* interval (or "confidence interval for prediction") is an interval produced by a process which, for 90% of all independent random samples y_1, \ldots, y_n , y taken from $Y|x_1, \ldots, Y|x_n$, Ylx, respectively, yields an interval containing the <u>new sampled value</u> y (assuming all the model assumptions fit).

Thus the prediction interval is *not* a confidence interval in the usual sense -- since it is used to estimate a value of a random variable rather than a parameter.